Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 4841, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37563128

ABSTRACT

Reconstructions of ocean oxygenation are critical for understanding the role of respired carbon storage in regulating atmospheric CO2. Independent sediment redox proxies are essential to assess such reconstructions. Here, we present a long magnetofossil record from the eastern Indian Ocean in which we observe coeval magnetic hardening and enrichment of larger, more elongated, and less oxidized magnetofossils during glacials compared to interglacials over the last ~900 ka. Our multi-proxy records of redox-sensitive magnetofossils, trace element concentrations, and benthic foraminiferal Δδ13C consistently suggest a recurrence of lower O2 in the glacial Indian Ocean over the last 21 marine isotope stages, as has been reported for the Atlantic and Pacific across the last glaciation. Consistent multi-proxy documentation of this repeated oxygen decline strongly supports the hypothesis that increased Indian Ocean glacial carbon storage played a significant role in atmospheric CO2 cycling and climate change over recent glacial/interglacial timescales.

2.
Nat Commun ; 9(1): 4007, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30275540

ABSTRACT

Understanding marine environmental change and associated biological turnover across the Palaeocene-Eocene Thermal Maximum (PETM; ~56 Ma)-the most pronounced Cenozoic short-term global warming event-is important because of the potential role of the ocean in atmospheric CO2 drawdown, yet proxies for tracing marine productivity and oxygenation across the PETM are limited and results remain controversial. Here we show that a high-resolution record of South Atlantic Ocean bottom water oxygenation can be extracted from exceptionally preserved magnetofossils-the bioinorganic magnetite nanocrystals produced by magnetotactic bacteria (MTB) using a new multiscale environmental magnetic approach. Our results suggest that a transient MTB bloom occurred due to increased nutrient supply. Bottom water oxygenation decreased gradually from the onset to the peak PETM. These observations provide a record of microbial response to the PETM and establish the value of magnetofossils as palaeoenvironmental indicators.


Subject(s)
Bacteria/ultrastructure , Ferrosoferric Oxide/analysis , Fossils , Geologic Sediments/chemistry , Hypoxia , Seawater/chemistry , Atlantic Ocean , Carbon Isotopes/analysis , Carbonates/analysis , Computer Simulation , Ecosystem , Geologic Sediments/microbiology , Global Warming/history , History, Ancient , Magnetosomes/chemistry , Magnetosomes/ultrastructure , Models, Theoretical , Seawater/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...