Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Transbound Emerg Dis ; 69(5): 2779-2787, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34919790

ABSTRACT

West Nile virus (WNV) and Usutu virus (USUV) are mosquito-borne viruses that belong to the Japanese encephalitis virus serocomplex within the genus Flavivirus. Due to climate change and the expansion of mosquito vectors, flaviviruses are becoming endemic in increasing numbers of countries. WNV infections are reported with symptoms ranging from mild fever to severe neuro-invasive disease. Until now, only a few USUV infections have been reported in humans, mostly with mild symptoms. The serological diagnosis and differentiation between flavivirus infections, in general, and between WNV and USUV, in particular, are challenging due to the high degree of cross-reacting antibodies, especially of those directed against the conserved fusion loop (FL) domain of the envelope (E) protein. We have previously shown that E proteins containing four amino-acid mutations in and near the FL strongly reduce the binding of cross-reactive antibodies leading to diagnostic technologies with improved specificities. Here, we expanded the technology to USUV and analyzed the differentiation of USUV- and WNV-induced antibodies in humans. IgG ELISAs modified by an additional competition step with the heterologous antigen resulted in overall specificities of 93.94% for WNV Equad and 92.75% for USUV Equad. IgM antibodies against WNV could be differentiated from USUV IgM in a direct comparison using both antigens. The data indicate the potential of the system to diagnose antigenically closely related flavivirus infections.


Subject(s)
Flavivirus Infections , Flavivirus , West Nile Fever , West Nile virus , Animals , Antibodies, Viral , Antigens, Heterophile , Epitopes , Flavivirus/genetics , Flavivirus Infections/diagnosis , Flavivirus Infections/epidemiology , Flavivirus Infections/veterinary , Humans , Immunoglobulin G , Immunoglobulin M , West Nile Fever/diagnosis , West Nile Fever/epidemiology , West Nile Fever/veterinary , West Nile virus/genetics
2.
Emerg Infect Dis ; 27(9): 2466-2470, 2021 09.
Article in English | MEDLINE | ID: mdl-34424166

ABSTRACT

Among 713 equids sampled in northeastern Brazil during 2013-2018, West Nile virus seroprevalence was 4.5% (95% CI 3.1%-6.3%). Mathematical modeling substantiated higher seroprevalence adjacent to an avian migratory route and in areas characterized by forest loss, implying increased risk for zoonotic infections in disturbed areas.


Subject(s)
West Nile Fever , West Nile virus , Animals , Brazil/epidemiology , Ecology , Seroepidemiologic Studies , West Nile Fever/epidemiology , West Nile Fever/veterinary
3.
Vaccines (Basel) ; 8(4)2020 Oct 13.
Article in English | MEDLINE | ID: mdl-33066262

ABSTRACT

Zika virus (ZIKV) is a zoonotic, human pathogenic, and mosquito-borne flavivirus. Its distribution is rapidly growing worldwide. Several attempts to develop vaccines for ZIKV are currently ongoing. Central to most vaccination approaches against flavivirus infections is the envelope (E) protein, which is the major target of neutralizing antibodies. Insect-cell derived, recombinantly expressed variants of E from the flaviviruses West Nile and Dengue virus have entered clinical trials in humans. Also for ZIKV, these antigens are promising vaccine candidates. Due to the structural similarity of flaviviruses, cross-reactive antibodies are induced by flavivirus antigens and have been linked to the phenomenon of antibody-dependent enhancement of infection (ADE). Especially the highly conserved fusion loop domain (FL) in the E protein is a target of such cross-reactive antibodies. In areas where different flaviviruses co-circulate and heterologous infections cannot be ruled out, this is of concern. To exclude the possibility that recombinant E proteins of ZIKV might induce ADE in infections with related flaviviruses, we performed an immunization study with an insect-cell derived E protein containing four mutations in and near the FL. Our data show that this mutant antigen elicits antibodies with equal neutralizing capacity as the wildtype equivalent. However, it induces much less serological cross-reactivity and does not cause ADE in vitro. These results indicate that mutated variants of the E protein might lead to ZIKV and other flavivirus vaccines with increased safety profiles.

5.
Sci Rep ; 10(1): 12786, 2020 07 30.
Article in English | MEDLINE | ID: mdl-32732876

ABSTRACT

Ionizing radiation is widely used to inactivate pathogens. It mainly acts by destroying nucleic acids but causes less damage to structural components like proteins. It is therefore highly suited for the sterilization of biological samples or the generation of inactivated vaccines. However, inactivation of viruses or bacteria requires relatively high doses and substantial amounts of radiation energy. Consequently, irradiation is restricted to shielded facilities-protecting personnel and the environment. We have previously shown that low energy electron irradiation (LEEI) has the same capacity to inactivate pathogens in liquids as current irradiation methods, but generates much less secondary X-ray radiation, which enables the use in normal laboratories by self-shielded irradiation equipment. Here, we present concepts for automated LEEI of liquids, in disposable bags or as a continuous process. As the electrons have a limited penetration depth, the liquid is transformed into a thin film. High concentrations of viruses (Influenza, Zika virus and Respiratory Syncytial Virus), bacteria (E. coli, B. cereus) and eukaryotic cells (NK-92 cell line) are efficiently inactivated by LEEI in a throughput suitable for various applications such as sterilization, vaccine manufacturing or cell therapy. Our results validate the premise that for pathogen and cell inactivation in liquids, LEEI represents a suitable and versatile irradiation method for standard biological research and production laboratories.


Subject(s)
Biomedical Research , Electrons , Laboratories , Radiation Protection/methods , Radiation, Ionizing , Sterilization/methods , Cell- and Tissue-Based Therapy , Escherichia coli , Eukaryotic Cells , Orthomyxoviridae , Radiation Exposure/prevention & control , Radiation Protection/instrumentation , Respiratory Syncytial Viruses , Vaccines, Inactivated , Zika Virus
6.
Virus Genes ; 56(5): 632-637, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32542479

ABSTRACT

Zika virus (ZIKV) is a positive-stranded RNA virus within the Flaviviridae family. After decades of circulation in Asia, ZIKV was introduced to Brazil in 2014-2015, associated with a rise in congenital malformations. Unlike the genetically related dengue virus (DENV), ZIKV constitutes only one serotype. Although assumed that ZIKV infection may engender lifelong immunity, the long-term kinetics of ZIKV antibody responses are unclear. We assessed long-term kinetics of ZIKV NS1-IgG response in 144 individuals from 3 different subpopulations: HIV patients, tuberculosis patients and healthy individuals first tested in 2016 and retested 1.5-2 years after the 2015-2016 ZIKV epidemic in Salvador de Bahia, Brazil, using a widely distributed NS1-based commercial ELISA. The seropositivity in 2016 reached 59.0% (85/144, 95% confidence interval (CI) 50.7-66.7%), and decreased to 38.6% (56/144, CI 31.3-47.0%) 1.5-2 years later. In addition, the median ZIKV NS1-ELISA reactivity for individuals that remained positive in both timepoints significantly decreased from a ratio of 4.4 (95% CI 3.8-5.0) to 1.6 (95% CI 1.6-1.9) over the 2-year interval (Z: - 6.1; p < 0.001) irrespective of the subpopulation analyzed. Initial 2016 DENV antibody response was non-significant between groups, suggesting comparable DENV background. The high 20.6% seroreversion suggest that widely used serologic tests may fail to account a considerable proportion of past ZIKV infections in flavivirus endemic countries. In addition, ZIKV immunity might be shorter-lived than previously thought, which may contribute to local ZIKV resurgence once individual immune responses wane sufficiently to reduce community protective immunity in addition to birth and migration.


Subject(s)
Antibodies, Viral/blood , Immunoglobulin G/blood , Viral Nonstructural Proteins/immunology , Zika Virus Infection , Zika Virus/immunology , Brazil/epidemiology , Comorbidity , Cross-Sectional Studies , HIV Infections/epidemiology , Humans , Prospective Studies , Tuberculosis/epidemiology , Zika Virus Infection/epidemiology , Zika Virus Infection/immunology
7.
Transbound Emerg Dis ; 66(4): 1701-1708, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30985075

ABSTRACT

Tick-borne encephalitis virus (TBEV) and West Nile virus (WNV) are important arthropod-borne zoonotic flaviviruses. Due to the emergence of WNV in TBEV-endemic regions co-circulation of both viruses is increasing. Flaviviruses are structurally highly similar, which leads to cross-reacting antibodies upon infection. Currently available serological assays for TBEV and WNV infections are therefore compromised by false-positive results, especially in IgG measurements. In order to discriminate both infections novel diagnostic methods are needed. We describe an ELISA to measure IgG antibodies specific for TBEV and WNV, applicable to human and horse sera. Mutant envelope proteins were generated, that lack conserved parts of the fusion loop domain, a predominant target for cross-reacting antibodies. These were incubated with equine and human sera with known TBEV, WNV or other flavivirus infections. For WNV IgG, specificities and sensitivities were 100% and 87.9%, respectively, for horse sera, and 94.4% and 92.5%, respectively, for human sera. TBEV IgG was detected with specificities and sensitivities of 95% and 96.7%, respectively, in horses, and 98.9% and 100%, respectively, in humans. Specificities increased to 100% by comparing individual samples on both antigens. The antigens could form the basis for serological TBEV- and WNV-assays with improved specificities.


Subject(s)
Encephalitis Viruses, Tick-Borne/isolation & purification , Encephalitis, Tick-Borne/diagnosis , Encephalitis, Tick-Borne/veterinary , Horse Diseases/diagnosis , West Nile Fever/diagnosis , West Nile Fever/veterinary , West Nile virus/isolation & purification , Animals , Antibodies, Viral/analysis , Horses , Humans , Immunoglobulin G/analysis
8.
Gene Expr Patterns ; 23-24: 52-58, 2017 01.
Article in English | MEDLINE | ID: mdl-28351515

ABSTRACT

Glycosylation is the most frequent and important post-translational modification of proteins. It occurs on specific consensus sequences but the final structure of a particular glycan is not coded on the DNA, rather it depends on the expression of the required enzymes and the availability of substrates (activated monosaccharides). Sialic acid (Sia) is the terminal monosaccharide of most glycoproteins or glycolipids (= glycoconjugates) and involved in a variety of function on molecular (e.g. determination of protein stability and half-life) and cellular level (e.g. influenza infection). Sia are synthesized in the cytosol from UDP-GlcNAc by the Roseman-Warren pathway. The key enzyme of this pathway is the UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE). Sia are transferred on glycoconjugates by a family of Golgi-located enzymes, so called sialyltransferases (ST). There are 20 (human) ST known, which all transfer CMP-activated Sia to specific acceptor-sites on glycoconjugates. The regulation of the expression of ST is still not understood. Using a GNE-deficient embryonic stem cell line, which cannot synthesize Sia endogenously and by supplementation of soluble Sia precursors, we present data that the cellular availability of Sia strongly regulates the expression of ST on the level of transcription. In summary, we suggest that the concentration of the donor substrate of sialyltransferases, which can be regarded as a sensor for the environmental conditions of a cell, regulates not only total sialylation, but also the quality of sialylation. This allows a cell to response to altered environmental conditions.


Subject(s)
Gene Expression Regulation, Enzymologic , N-Acetylneuraminic Acid/biosynthesis , Sialyltransferases/genetics , Animals , Carbohydrate Epimerases/genetics , Carbohydrate Epimerases/metabolism , Embryonic Stem Cells/enzymology , Embryonic Stem Cells/metabolism , Mice , Protein Processing, Post-Translational , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...