Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Mol Med ; 19(10): 2507-11, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26152778

ABSTRACT

Cytokine networks initiated by means of innate immunity are regarded as a major determinant of host defence in response to acute infection by bacteria including Borrelia burgdorferi. Herein, we demonstrate that interferon (IFN)-α, either endogenously produced after exposure of cells to toll-like receptor-9-activating CpG oligonucleotides or provided as recombinant cytokine, weakens activation of the anti-bacterial interleukin (IL)-1/IL-22 axis in human peripheral blood mononuclear cells exposed to viable B. burgdorferi. As IFN-α has been related to pathological dissemination of the spirochaete, data suggest an immunoregulatory role of type I IFN in this context that is able to significantly modify cytokine profiles thereby possibly determining early course of B. burgdorferi infection.


Subject(s)
Borrelia burgdorferi/physiology , Interferon-alpha/pharmacology , Interleukins/biosynthesis , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/microbiology , Borrelia burgdorferi/drug effects , Humans , Leukocytes, Mononuclear/drug effects , Oligodeoxyribonucleotides/pharmacology , Interleukin-22
2.
Front Pharmacol ; 6: 317, 2015.
Article in English | MEDLINE | ID: mdl-26793108

ABSTRACT

Interleukin (IL)-22 is a cytokine displaying tissue protective and pro-regenerative functions in various preclinical disease models. Anti-bacterial, pro-proliferative, and anti-apoptotic properties mediated by activation of the transcription factor signal transducer and activator of transcription (STAT)-3 are key to biological functions of this IL-10 family member. Herein, we introduce RINm5F insulinoma cells as rat ß-cell line that, under the influence of IL-22, displays activation of STAT3 with induction of its downstream gene targets Socs3, Bcl3, and Reg3b. In addition, IL-22 also activates STAT1 in this cell type. To refine those observations, IL-22 biological activity was evaluated using ex vivo cultivated murine pancreatic islets. In accord with data on RINm5F cells, islet exposure to IL-22 activated STAT3 and upregulation of STAT3-inducible Socs3, Bcl3, and Steap4 was evident under those conditions. As these observations supported the hypothesis that IL-22 may exert protective functions in toxic ß-cell injury, application of IL-22 was investigated in murine multiple-low-dose streptozotocin (STZ)-induced diabetes. For that purpose, recombinant IL-22 was administered thrice either immediately before and at disease onset (at d4, d6, d8) or closely thereafter (at d8, d10, d12). These two IL-22-treatment periods coincide with two early peaks of ß-cell injury detectable in this model. Notably, none of the two IL-22-treatment strategies affected diabetes incidence or blood glucose levels in STZ-treated mice. Moreover, pathological changes in islet morphology analyzed 28 days after disease induction were not ameliorated by IL-22 administration. Taken together, despite being active on rat RINm5F insulinoma cells and murine pancreatic islets, recombinant IL-22 fails to protect pancreatic ß-cells in the tested protocols from toxic effects of STZ and thus is unable to ameliorate disease in the widely used model of STZ-induced diabetes.

SELECTION OF CITATIONS
SEARCH DETAIL
...