Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(27): e202401343, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38656763

ABSTRACT

The analysis of pressure induced changes in the chemical shift of proteins allows statements on structural fluctuations proteins exhibit at ambient pressure. The inherent issue of separating general pressure effects from structural related effects on the pressure dependence of chemical shifts has so far been addressed by considering the characteristics of random coil peptides on increasing pressure. In this work, chemically and pressure denatured states of the cold shock protein B from Bacillus subtilis (BsCspB) have been assigned in 2D 1H-15N HSQC NMR spectra and their dependence on increasing hydrostatic pressure has been evaluated. The pressure denatured polypeptide chain has been used to separate general from structural related effects on 1H and 15N chemical shifts of native BsCspB and the implications on the interpretation of pressure induced changes in the chemical shift regarding the structure of BsCspB are discussed. It has been found that the ensemble of unstructured conformations of BsCspB shows different responses to increasing pressure than random coil peptides do. Thus, the approach used for considering the general effects that arise when hydrostatic pressure increases changes the structural conclusions that are drawn from high pressure NMR spectroscopic experiments that rely on the analysis of chemical shifts.


Subject(s)
Bacillus subtilis , Bacterial Proteins , Nuclear Magnetic Resonance, Biomolecular , Pressure , Protein Conformation , Bacillus subtilis/chemistry , Bacterial Proteins/chemistry , Hydrostatic Pressure
2.
Structure ; 31(10): 1259-1274.e10, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37557171

ABSTRACT

The conformational landscape of multi-domain proteins is inherently linked to their specific functions. This also holds for polyubiquitin chains that are assembled by two or more ubiquitin domains connected by a flexible linker thus showing a large interdomain mobility. However, molecular recognition and signal transduction are associated with particular conformational substates that are populated in solution. Here, we apply high-resolution NMR spectroscopy in combination with dual-scale MD simulations to explore the conformational space of K6-, K29-, and K33-linked diubiquitin molecules. The conformational ensembles are evaluated utilizing a paramagnetic cosolute reporting on solvent exposure plus a set of complementary NMR parameters. This approach unravels a conformational heterogeneity of diubiquitins and explains the diversity of structural models that have been determined for K6-, K29-, and K33-linked diubiquitins in free and ligand-bound states so far. We propose a general application of the approach developed here to demystify multi-domain proteins occurring in nature.


Subject(s)
Polyubiquitin , Ubiquitin , Protein Conformation , Ubiquitin/metabolism , Polyubiquitin/chemistry , Magnetic Resonance Spectroscopy
3.
ACS Chem Biol ; 14(5): 839-844, 2019 05 17.
Article in English | MEDLINE | ID: mdl-30998314

ABSTRACT

Electron paramagnetic resonance spectroscopy in combination with site-directed spin labeling (SDSL) is an important tool to obtain long-range distance restraints for protein structural research. We here study a variety of azide- and alkyne-bearing noncanonical amino acids (ncAA) in terms of protein single- and double-incorporation efficiency via nonsense suppression, metabolic stability, yields of nitroxide labeling via copper-catalyzed [3 + 2] azide-alkyne cycloadditions (CuAAC), and spectroscopic properties in continuous-wave and double electron-electron resonance measurements. We identify para-ethynyl-l-phenylalanine and para-propargyloxy-l-phenylalanine as suitable ncAA for CuAAC-based SDSL that will complement current SDSL approaches, particularly in cases in which essential cysteines of a target protein prevent the use of sulfhydryl-reactive spin labels.


Subject(s)
Alkynes/chemistry , Amino Acids/chemistry , Azides/chemistry , Copper/chemistry , Cycloaddition Reaction , Electron Spin Resonance Spectroscopy/methods , Nitrogen Oxides/chemistry , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL
...