Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Eng Data ; 69(2): 650-678, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38352073

ABSTRACT

The prediction of the thermodynamic properties of lactones is an important challenge in the flavor, fragrance, and pharmaceutical industries. Here, we develop a predictive model of the phase behavior of binary mixtures of lactones with hydrocarbons, alcohols, ketones, esters, aromatic compounds, water, and carbon dioxide. We extend the group-parameter matrix of the statistical associating fluid theory SAFT-γ Mie group-contribution method by defining a new cyclic ester group, denoted cCOO. The group is composed of two spherical Mie segments and two association electron-donating sites of type e1 that can interact with association electron-accepting sites of type H in other molecules. The model parameters of the new cCOO group interactions (1 like interaction and 17 unlike interactions) are characterized to represent target experimental data of physical properties of pure fluids (vapor pressure, single-phase density, and vaporization enthalpy) and mixtures (vapor-liquid equilibria, liquid-liquid equilibria, solid-liquid equilibria, density, and excess enthalpy). The robustness of the model is assessed by comparing theoretical predictions with experimental data, mainly for oxolan-2-one, 5-methyloxolan-2-one, and oxepan-2-one (also referred to as γ-butyrolactone, γ-valerolactone, and ε-caprolactone, respectively). The calculations are found to be in very good quantitative agreement with experiments. The proposed model allows for accurate predictions of the thermodynamic properties and highly nonideal phase behavior of the systems of interest, such as azeotrope compositions. It can be used to support the development of novel molecules and manufacturing processes.

2.
J Chem Phys ; 160(5)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38341691

ABSTRACT

A new free-energy functional is proposed for inhomogeneous associating fluids. The general formulation of Wertheim's thermodynamic perturbation theory is considered as the starting point of the derivation. We apply the hypotheses of the statistical associating fluid theory in the classical density functional theory (DFT) framework to obtain a tractable expression of the free-energy functional for inhomogeneous associating fluids. Specific weighted functions are introduced in our framework to describe association interactions for a fluid under confinement. These weighted functions have a mathematical structure similar to the weighted densities of the fundamental-measure theory (i.e., they can be expressed as convolution products) such that they can be efficiently evaluated with Fourier transforms in a 3D space. The resulting free-energy functional can be employed to determine the microscopic structure of inhomogeneous associating fluids of arbitrary 3D geometry. The new model is first compared with Monte Carlo simulations and previous versions of DFT for a planar hard wall system in order to check its consistency in a 1D case. As an example of application in a 3D configuration, we then investigate the extreme confinement of an associating hard-sphere fluid inside an anisotropic open cavity with a shape that mimics a simplified model of zeolite. Both the density distribution and the corresponding molecular bonding profile are given, revealing complementary information to understand the structure of the associating fluid inside the cavity network. The impact of the degree of association on the preferential positions of the molecules inside the cavity is investigated as well as the competition between association and steric effect on adsorption.

3.
Front Plant Sci ; 8: 1953, 2017.
Article in English | MEDLINE | ID: mdl-29209341

ABSTRACT

Yam (Dioscorea spp.) is a tuber crop grown for food security, income generation, and traditional medicine. This crop has a high cultural value for some of the groups growing it. Most of the production comes from West Africa where the increased demand has been covered by enlarging cultivated surfaces while the mean yield remained around 10 t tuber ha-1. In West Africa, yam is traditionally cultivated without input as the first crop after a long-term fallow as it is considered to require a high soil fertility. African soils, however, are being more and more degraded. The aims of this review were to show the importance of soil fertility for yam, discuss barriers that might limit the adoption of integrated soil fertility management (ISFM) in yam-based systems in West Africa, present the concept of innovation platforms (IPs) as a tool to foster collaboration between actors for designing innovations in yam-based systems and provide recommendations for future research. This review shows that the development of sustainable, feasible, and acceptable soil management innovations for yam requires research to be conducted in interdisciplinary teams including natural and social sciences and in a transdisciplinary manner involving relevant actors from the problem definition, to the co-design of soil management innovations, the evaluation of research results, their communication and their implementation. Finally, this research should be conducted in diverse biophysical and socio-economic settings to develop generic rules on soil/plant relationships in yam as affected by soil management and on how to adjust the innovation supply to specific contexts.

SELECTION OF CITATIONS
SEARCH DETAIL
...