Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Mol Oncol ; 18(6): 1510-1530, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38459621

ABSTRACT

The transcription factor receptor-interacting protein 140 (RIP140) regulates intestinal homeostasis and tumorigenesis through Wnt signaling. In this study, we investigated its effect on the Notch/HES1 signaling pathway. In colorectal cancer (CRC) cell lines, RIP140 positively regulated HES1 gene expression at the transcriptional level via a recombining binding protein suppressor of hairless (RBPJ)/neurogenic locus notch homolog protein 1 (NICD)-mediated mechanism. In support of these in vitro data, RIP140 and HES1 expression significantly correlated in mouse intestine and in a cohort of CRC samples, thus supporting the positive regulation of HES1 gene expression by RIP140. Interestingly, when the Notch pathway is fully activated, RIP140 exerted a strong inhibition of HES1 gene transcription controlled by the level of HES1 itself. Moreover, RIP140 directly interacts with HES1 and reversed its mitogenic activity in human CRC cells. In line with this observation, HES1 levels were associated with a better patient survival only when tumors expressed high levels of RIP140. Our data identify RIP140 as a key regulator of the Notch/HES1 signaling pathway, with a dual effect on HES1 gene expression at the transcriptional level and a strong impact on colon cancer cell proliferation.


Subject(s)
Cell Proliferation , Colonic Neoplasms , Gene Expression Regulation, Neoplastic , Nuclear Receptor Interacting Protein 1 , Transcription Factor HES-1 , Animals , Humans , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Colonic Neoplasms/metabolism , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Nuclear Receptor Interacting Protein 1/metabolism , Receptors, Notch/metabolism , Receptors, Notch/genetics , Signal Transduction , Transcription Factor HES-1/metabolism , Transcription Factor HES-1/genetics
2.
Stem Cell Res ; 72: 103192, 2023 10.
Article in English | MEDLINE | ID: mdl-37660555

ABSTRACT

Type 2 Long QT Syndrome (LQT2) is a rare genetic heart rhythm disorder causing life-threatening arrhythmias. We derived induced pluripotent stem cell (iPSC) lines from two patients with LQT2, aged 18 and 6, both carrying a heterozygous missense mutation on the 3rd and 11th exons of KCNH2. The iPSC lines exhibited normal genomes, expressed pluripotent markers, and differentiated into trilineage embryonic layers. These patient-specific iPSC lines provide a valuable model to study the molecular and functional impact of the hERG channel gene mutation in LQT2 and to develop personalized therapeutic approaches for this syndrome.


Subject(s)
Induced Pluripotent Stem Cells , Long QT Syndrome , Humans , Induced Pluripotent Stem Cells/metabolism , ERG1 Potassium Channel/genetics , Long QT Syndrome/metabolism , Arrhythmias, Cardiac/metabolism , Mutation
3.
Proc Natl Acad Sci U S A ; 120(25): e2219431120, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37307458

ABSTRACT

Gut microbiota imbalance (dysbiosis) is increasingly associated with pathological conditions, both within and outside the gastrointestinal tract. Intestinal Paneth cells are considered to be guardians of the gut microbiota, but the events linking Paneth cell dysfunction with dysbiosis remain unclear. We report a three-step mechanism for dysbiosis initiation. Initial alterations in Paneth cells, as frequently observed in obese and inflammatorybowel diseases patients, cause a mild remodeling of microbiota, with amplification of succinate-producing species. SucnR1-dependent activation of epithelial tuft cells triggers a type 2 immune response that, in turn, aggravates the Paneth cell defaults, promoting dysbiosis and chronic inflammation. We thus reveal a function of tuft cells in promoting dysbiosis following Paneth cell deficiency and an unappreciated essential role of Paneth cells in maintaining a balanced microbiota to prevent inappropriate activation of tuft cells and deleterious dysbiosis. This succinate-tuft cell inflammation circuit may also contribute to the chronic dysbiosis observed in patients.


Subject(s)
Dysbiosis , Mucous Membrane , Humans , Inflammation , Paneth Cells , Succinates , Succinic Acid
4.
ACS Appl Bio Mater ; 5(6): 3075-3085, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35584545

ABSTRACT

The aim of this work was the development of injectable radio-opaque and macroporous calcium phosphate cement (CPC) to be used as a bone substitute for the treatment of pathologic vertebral fractures. A CPC was first rendered radio-opaque by the incorporation of zirconium dioxide (ZrO2). In order to create macroporosity, poly lactic-co-glycolic acid (PLGA) microspheres around 100 µm were homogeneously incorporated into the CPC as observed by scanning electron microscopy. Physicochemical analyses by X-ray diffraction and Fourier transform infrared spectroscopy confirmed the brushite phase of the cement. The mechanical properties of the CPC/PLGA cement containing 30% PLGA (wt/wt) were characterized by a compressive strength of 2 MPa and a Young's modulus of 1 GPa. The CPC/PLGA exhibited initial and final setting times of 7 and 12 min, respectively. Although the incorporation of PLGA microspheres increased the force necessary to inject the cement and decreased the percentage of injected mass as a function of time, the CPC/PLGA appeared fully injectable at 4 min. Moreover, in comparison with CPC, CPC/PLGA showed a full degradation in 6 weeks (with 100% mass loss), and this was associated with an acidification of the medium containing the CPC/PLGA sample (pH of 3.5 after 6 weeks). A cell viability test validated CPC/PLGA biocompatibility, and in vivo analyses using a bone defect assay in the caudal vertebrae of Wistar rats showed the good opacity of the CPC through the tail and a significant increased degradation of the CPC/PLGA cement a month after implantation. In conclusion, this injectable CPC scaffold appears to be an interesting material for bone substitution.


Subject(s)
Lactic Acid , Polyglycolic Acid , Animals , Bone Cements/pharmacology , Calcium Phosphates/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Rats , Rats, Wistar
5.
Stem Cell Res ; 60: 102727, 2022 04.
Article in English | MEDLINE | ID: mdl-35245853

ABSTRACT

Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT) is a genetic disorder characterized by ventricular tachycardia, that can cause the heart to stop beating leading to death. The prevalence is 1/10.000 and in approximately 60% of cases, the syndrome can be due to a mutation of the cardiac ryanodine receptor gene (RyR2). We derived an induced pluripotent stem cell (iPSC) line from an 11-year-old patient blood-cells, carrying a heterozygous missense mutation on the 8th exon of the RyR2 N-terminal part. This reprogramed CPVT line displayed normal karyotype, expressed pluripotent markers and had a capacity to differentiate in trilineage embryonic layers.


Subject(s)
Induced Pluripotent Stem Cells , Tachycardia, Ventricular , Child , Humans , Induced Pluripotent Stem Cells/metabolism , Mutation/genetics , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Tachycardia, Ventricular/genetics
6.
Nat Commun ; 12(1): 7037, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34857760

ABSTRACT

Growing evidence supports the importance of the p53 tumor suppressor in metabolism but the mechanisms underlying p53-mediated control of metabolism remain poorly understood. Here, we identify the multifunctional E4F1 protein as a key regulator of p53 metabolic functions in adipocytes. While E4F1 expression is upregulated during obesity, E4f1 inactivation in mouse adipose tissue results in a lean phenotype associated with insulin resistance and protection against induced obesity. Adipocytes lacking E4F1 activate a p53-dependent transcriptional program involved in lipid metabolism. The direct interaction between E4F1 and p53 and their co-recruitment to the Steaoryl-CoA Desaturase-1 locus play an important role to regulate monounsaturated fatty acids synthesis in adipocytes. Consistent with the role of this E4F1-p53-Steaoryl-CoA Desaturase-1 axis in adipocytes, p53 inactivation or diet complementation with oleate partly restore adiposity and improve insulin sensitivity in E4F1-deficient mice. Altogether, our findings identify a crosstalk between E4F1 and p53 in the control of lipid metabolism in adipocytes that is relevant to obesity and insulin resistance.


Subject(s)
Adipocytes/metabolism , Adipose Tissue/metabolism , Obesity/genetics , Repressor Proteins/genetics , Stearoyl-CoA Desaturase/genetics , Tumor Suppressor Protein p53/genetics , Ubiquitin-Protein Ligases/genetics , Adipocytes/pathology , Adipose Tissue/pathology , Adult , Aged , Animals , Body Mass Index , Fatty Acids, Monounsaturated/metabolism , Female , Gene Expression Regulation , Humans , Insulin Resistance , Lipid Metabolism/genetics , Male , Mice , Mice, Knockout , Middle Aged , Obesity/metabolism , Obesity/pathology , Repressor Proteins/deficiency , Repressor Proteins/metabolism , Signal Transduction , Stearoyl-CoA Desaturase/metabolism , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Protein Ligases/deficiency , Ubiquitin-Protein Ligases/metabolism
7.
Biomater Sci ; 9(18): 6203-6213, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34350906

ABSTRACT

There is a growing interest in magnetic nanocomposites in biomaterials science. In particular, nanocomposites that combine poly(lactide) (PLA) nanofibers and superparamagnetic iron oxide nanoparticles (SPIONs), which can be obtained by either electrospinning of a SPION suspension in PLA or by precipitating SPIONs at the surface of PLA, are well documented in the literature. However, these two classical processes yield nanocomposites with altered materials properties, and their long-term in vivo fate and performances have in most cases only been evaluated over short periods of time. Recently, we reported a new strategy to prepare well-defined PLA@SPION nanofibers with a quasi-monolayer of SPIONs anchored at the surface of PLA electrospun fibers. Herein, we report on a 6-month in vivo rat implantation study with the aim of evaluating the long-term magnetic resonance imaging (MRI) properties of this new class of magnetic nanocomposites, as well as their tissue integration and degradation. Using clinically relevant T2-weighted MRI conditions, we show that the PLA@SPION nanocomposites are clearly visible up to 6 months. We also evaluate here by histological analyses the slow degradation of the PLA@SPIONs, as well as their biocompatibility. Overall, these results make these nanocomposites attractive for the development of magnetic biomaterials for biomedical applications.


Subject(s)
Magnetite Nanoparticles , Nanocomposites , Animals , Magnetic Iron Oxide Nanoparticles , Magnetic Resonance Imaging , Polyesters , Rats
8.
Mol Hum Reprod ; 27(5)2021 05 08.
Article in English | MEDLINE | ID: mdl-33851217

ABSTRACT

Adenomyosis is characterised by epithelial gland and mesenchymal stroma invasion of the uterine myometrium. Adenomyosis is an oestrogen-dependent gynaecological disease in which a number of factors, such as inflammatory molecules, prostaglandins (PGs), angiogenic factors, cell proliferation and extracellular matrix remodelling proteins, also play a role as key disease mediators. In this study, we used mice lacking both lipocalin and hematopoietic-PG D synthase (L- and H-Pgds) genes in which PGD2 is not produced to elucidate PGD2 roles in the uterus. Gene expression studied by real-time PCR and hormone dosages performed by ELISA or liquid chromatography tandem mass spectroscopy in mouse uterus samples showed that components of the PGD2 signalling pathway, both PGDS and PGD2-receptors, are expressed in the mouse endometrium throughout the oestrus cycle with some differences among uterine compartments. We showed that PGE2 production and the steroidogenic pathway are dysregulated in the absence of PGD2. Histological analysis of L/H-Pgds-/- uteri, and immunohistochemistry and immunofluorescence analyses of proliferation (Ki67), endothelial cell (CD31), epithelial cell (pan-cytokeratin), myofibroblast (α-SMA) and mesenchymal cell (vimentin) markers, identify that 6-month-old L/H-Pgds-/- animals developed adenomyotic lesions, and that disease severity increased with age. In conclusion, this study suggests that the PGD2 pathway has major roles in the uterus by protecting the endometrium against adenomyosis development. Additional experiments, using for instance transcriptomic approaches, are necessary to fully determine the molecular mechanisms that lead to adenomyosis in L/H-Pgds-/- mice and to confirm whether this strain is an appropriate model for studying the human disease.


Subject(s)
Adenomyosis/metabolism , Prostaglandin D2/physiology , Signal Transduction , Uterus/metabolism , Animals , Dinoprostone/metabolism , Female , Intramolecular Oxidoreductases/metabolism , Lipocalins/metabolism , Mice , Prostaglandin D2/genetics , Prostaglandin D2/metabolism , Real-Time Polymerase Chain Reaction , Steroids/biosynthesis , Uterus/physiology
9.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Article in English | MEDLINE | ID: mdl-33658388

ABSTRACT

Ki-67 is a nuclear protein that is expressed in all proliferating vertebrate cells. Here, we demonstrate that, although Ki-67 is not required for cell proliferation, its genetic ablation inhibits each step of tumor initiation, growth, and metastasis. Mice lacking Ki-67 are resistant to chemical or genetic induction of intestinal tumorigenesis. In established cancer cells, Ki-67 knockout causes global transcriptome remodeling that alters the epithelial-mesenchymal balance and suppresses stem cell characteristics. When grafted into mice, tumor growth is slowed, and metastasis is abrogated, despite normal cell proliferation rates. Yet, Ki-67 loss also down-regulates major histocompatibility complex class I antigen presentation and, in the 4T1 syngeneic model of mammary carcinoma, leads to an immune-suppressive environment that prevents the early phase of tumor regression. Finally, genes involved in xenobiotic metabolism are down-regulated, and cells are sensitized to various drug classes. Our results suggest that Ki-67 enables transcriptional programs required for cellular adaptation to the environment. This facilitates multiple steps of carcinogenesis and drug resistance, yet may render cancer cells more susceptible to antitumor immune responses.


Subject(s)
Carcinogenesis/metabolism , Gene Expression Regulation, Neoplastic , Ki-67 Antigen/metabolism , Mammary Neoplasms, Animal/metabolism , Neoplasm Proteins/metabolism , Transcription, Genetic , Animals , Carcinogenesis/genetics , Female , Gene Knock-In Techniques , Gene Knockout Techniques , Ki-67 Antigen/genetics , Mammary Neoplasms, Animal/genetics , Mice , Mice, Knockout , Neoplasm Proteins/genetics
10.
Eur J Nutr ; 60(4): 2013-2027, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32989473

ABSTRACT

PURPOSE: Fatty acid esters of hydroxy fatty acids (FAHFAs) are a large family of endogenous bioactive lipids. To date, most of the studied FAHFAs are branched regioisomers of Palmitic Acid Hydroxyl Stearic Acid (PAHSA) that were reported to possess anti-diabetic and anti-inflammatory activity in humans and rodents. Recently, we have demonstrated that 9-PAHPA or 9-OAHPA intake increased basal metabolism and enhanced insulin sensitivity in healthy control diet-fed mice but induced liver damage in some mice. The present work aims to explore whether a long-term intake of 9-PAHPA or 9-OAHPA may have similar effects in obesogenic diet-fed mice. METHODS: C57Bl6 mice were fed with a control or high fat-high sugar (HFHS) diets for 12 weeks. The HFHS diet was supplemented or not with 9-PAHPA or 9-OAHPA. Whole-body metabolism was explored. Glucose and lipid metabolism as well as mitochondrial activity and oxidative stress status were analyzed. RESULTS: As expected, the intake of HFHS diet led to obesity and lower insulin sensitivity with minor effects on liver parameters. The long-term intake of 9-PAHPA or 9-OAHPA modulated favorably the basal metabolism and improved insulin sensitivity as measured by insulin tolerance test. On the contrary to what we have reported previously in healthy mice, no marked effect for these FAHFAs was observed on liver metabolism of obese diabetic mice. CONCLUSION: This study indicates that both 9-PAHPA and 9-OAHPA may have interesting insulin-sensitizing effects in obese mice with lower insulin sensitivity.


Subject(s)
Diabetes Mellitus, Experimental , Insulin Resistance , Animals , Basal Metabolism , Diabetes Mellitus, Experimental/metabolism , Insulin/metabolism , Lipid Metabolism , Liver/metabolism , Mice , Mice, Inbred C57BL
11.
J Nutr Biochem ; 79: 108361, 2020 05.
Article in English | MEDLINE | ID: mdl-32179409

ABSTRACT

Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are a new family of endogenous lipids recently discovered. Several studies reported that some FAHFAs have antidiabetic and anti-inflammatory effects. The objective of this study was to explore the impact of two FAHFAs, 9-PAHPA or 9-OAHPA, on the metabolism of mice. C57Bl/6J male mice, 6 weeks old, were divided into 3 groups of 10 mice each. One group received a control diet and the two others groups received the control diet supplemented with 9-PAHPA or 9-OAHPA for 12 weeks. Mouse weight and body composition were monitored throughout the study. Some days before euthanasia, energy expenditure, glucose tolerance and insulin sensitivity were also determined. After sacrifice, blood and organs were collected for relevant molecular, biochemical and histological analyses. Although high intake of 9-PAHPA or 9-OAHPA increased basal metabolism, it had no direct effect on body weight. Interestingly, the 9-PAHPA or 9-OAHPA intake increased insulin sensitivity but without modifying glucose tolerance. Nevertheless, 9-PAHPA intake induced a loss of glucose-stimulated insulin secretion. Surprisingly, both studied FAHFAs induced hepatic steatosis and fibrosis in some mice, which were more marked with 9-PAHPA. Finally, a slight remodeling of white adipose tissue was also observed with 9-PAHPA intake. In conclusion, the long-term high intake of 9-PAHPA or 9-OAHPA increased basal metabolism and insulin sensitivity in healthy mice. However, this effect, highly likely beneficial in a diabetic state, was accompanied by manifest liver damage in certain mice that should deserve special attention in both healthy and pathological studies.


Subject(s)
Basal Metabolism/drug effects , Fatty Acids/pharmacology , Insulin Resistance , Liver/metabolism , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Animals , Blood Glucose/analysis , Body Weight/drug effects , Energy Metabolism , Fatty Acids/administration & dosage , Fatty Acids/adverse effects , Fatty Liver/metabolism , Glucose Tolerance Test , Homeostasis , Inflammation/metabolism , Insulin/metabolism , Lipid Metabolism , Liver Cirrhosis/metabolism , Male , Mice , Mice, Inbred C57BL
12.
Theranostics ; 10(3): 1016-1032, 2020.
Article in English | MEDLINE | ID: mdl-31938048

ABSTRACT

Clinical data suggest that the protein tyrosine phosphatase PTPN13 exerts an anti-oncogenic effect. Its exact role in tumorigenesis remains, however, unclear due to its negative impact on FAS receptor-induced apoptosis. Methods: We crossed transgenic mice deleted for PTPN13 phosphatase activity with mice that overexpress human HER2 to assess the exact role of PTPN13 in tumor development and aggressiveness. To determine the molecular mechanism underlying the PTPN13 tumor suppressor activity we developed isogenic clones of the aggressive human breast cancer cell line MDA-MB-231 overexpressing either wild type or a catalytically-inactive mutant PTPN13 and subjected these to phosphoproteomic and gene ontology analyses. We investigated the PTPN13 consequences on cell aggressiveness using wound healing and Boyden chamber assays, on intercellular adhesion using videomicroscopy, cell aggregation assay and immunofluorescence. Results: The development, growth and invasiveness of breast tumors were strongly increased by deletion of the PTPN13 phosphatase activity in transgenic mice. We observed that PTPN13 phosphatase activity is required to inhibit cell motility and invasion in the MDA-MB-231 cell line overexpressing PTPN13. In vivo, the negative PTPN13 effect on tumor invasiveness was associated with a mesenchymal-to-epithelial transition phenotype in athymic mice xenografted with PTPN13-overexpressing MDA-MB-231 cells, as well as in HER2-overexpressing mice with wild type PTPN13, compared to HER2-overexpressing mice that lack PTPN13 phosphatase activity. Phosphoproteomic and gene ontology analyses indicated a role of PTPN13 in the regulation of intercellular junction-related proteins. Finally, protein localization studies in MDA-MB-231 cells and HER2-overexpressing mice tumors confirmed that PTPN13 stabilizes intercellular adhesion and promotes desmosome formation. Conclusions: These data provide the first evidence for the negative role of PTPN13 in breast tumor invasiveness and highlight its involvement in cell junction stabilization.


Subject(s)
Mammary Neoplasms, Experimental , Protein Tyrosine Phosphatase, Non-Receptor Type 13/physiology , Triple Negative Breast Neoplasms , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cell Transformation, Neoplastic , Epithelial-Mesenchymal Transition , Female , Humans , Intercellular Junctions , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Nude , Mice, Transgenic , Neoplasm Invasiveness , Neoplasm Transplantation , Receptor, ErbB-2/metabolism , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology
13.
Stem Cell Res ; 43: 101696, 2020 03.
Article in English | MEDLINE | ID: mdl-31918214

ABSTRACT

Bloom syndrome is characterized by severe pre- and postnatal growth deficiency, immune abnormalities, sensitivity to sunlight, insulin resistance, and a high risk for many cancers that occur at an early age. The diagnosis is established on characteristic clinical features and/or presence of biallelic pathogenic variants in the BLM gene. An increased frequency of sister-chromatid exchanges is also observed and can be useful to diagnose BS patients with weak or no clinical features. For the first time, we derived an induced pluripotent cell line from a Bloom syndrome patient retaining the specific sister-chromatid exchange feature as a unique tool to model the pathology.


Subject(s)
Bloom Syndrome/genetics , Induced Pluripotent Stem Cells/metabolism , Sister Chromatid Exchange/genetics , Adolescent , Animals , Female , Humans
14.
Parasitology ; 147(3): 255-262, 2020 03.
Article in English | MEDLINE | ID: mdl-31727197

ABSTRACT

Although there is a plethora of cancer associated-factors that can ultimately culminate in death (cachexia, organ impairment, metastases, opportunistic infections, etc.), the focal element of every terminal malignancy is the failure of our natural defences to control unlimited cell proliferation. The reasons why our defences apparently lack efficiency is a complex question, potentially indicating that, under Darwinian terms, solutions other than preventing cancer progression are also important contributors. In analogy with host-parasite systems, we propose to call this latter option 'tolerance' to cancer. Here, we argue that the ubiquity of oncogenic processes among metazoans is at least partially attributable to both the limitations of resistance mechanisms and to the evolution of tolerance to cancer. Deciphering the ecological contexts of alternative responses to the cancer burden is not a semantic question, but rather a focal point in understanding the evolutionary ecology of host-tumour relationships, the evolution of our defences, as well as why and when certain cancers are likely to be detrimental for survival.


Subject(s)
Antibiosis , Biological Evolution , Host-Parasite Interactions/immunology , Immune Tolerance , Neoplasms/immunology , Animals
15.
Cell Rep ; 28(11): 2851-2865.e4, 2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31509747

ABSTRACT

Hematopoiesis is particularly sensitive to DNA damage. Myeloid tumor incidence increases in patients with DNA repair defects and after chemotherapy. It is not known why hematopoietic cells are highly vulnerable to DNA damage. Addressing this question is complicated by the paucity of mouse models of hematopoietic malignancies due to defective DNA repair. We show that DNA repair-deficient Mcm8- and Mcm9-knockout mice develop myeloid tumors, phenocopying prevalent myelodysplastic syndromes. We demonstrate that these tumors are preceded by a lifelong DNA damage burden in bone marrow and that they acquire proliferative capacity by suppressing signaling of the tumor suppressor and cell cycle controller RB, as often seen in patients. Finally, we found that absence of MCM9 and the tumor suppressor Tp53 switches tumorigenesis to lymphoid tumors without precedent myeloid malignancy. Our results demonstrate that MCM8/9 deficiency drives myeloid tumor development and establishes a DNA damage burdened mouse model for hematopoietic malignancies.


Subject(s)
Cell Differentiation/genetics , DNA Damage/genetics , Gene Expression Regulation, Leukemic/genetics , Hematologic Neoplasms/metabolism , Minichromosome Maintenance Proteins/metabolism , Tumor Suppressor Protein p53/metabolism , Aging/genetics , Aging/metabolism , Aging/physiology , Animals , Apoptosis/genetics , Bone Marrow/metabolism , Bone Marrow/pathology , Cell Proliferation/genetics , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , Mice , Mice, Knockout , Minichromosome Maintenance Proteins/genetics , Retinoblastoma Protein/genetics , Retinoblastoma Protein/metabolism , Signal Transduction/genetics , Splenomegaly/genetics , Splenomegaly/metabolism , Tumor Suppressor Protein p53/genetics
16.
Stem Cell Res ; 39: 101515, 2019 08.
Article in English | MEDLINE | ID: mdl-31404747

ABSTRACT

Werner syndrome (WS) is a rare human autosomal recessive disorder characterized by early onset of aging-associated diseases, chromosomal instability, and cancer predisposition, without therapeutic treatment solution. Major clinical symptoms of WS include common age-associated diseases, such as insulin-resistant diabetes mellitus, and atherosclerosis. WRN, the gene responsible for the disease, encodes a RECQL-type DNA helicase with a role in telomere metabolism. We derived a stable iPSC line from 53 years old patient's PBMC, with a normal karyotype, but exhibiting a short telomere length, as a major aspect of the cellular phenotype involved in the pathology.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Leukocytes, Mononuclear/cytology , Werner Syndrome/genetics , Cells, Cultured , Flow Cytometry , Fluorescent Antibody Technique , Genetic Predisposition to Disease/genetics , Humans , Karyotyping , Leukocytes, Mononuclear/metabolism , Microsatellite Repeats/genetics , Telomere/genetics
17.
Cell Rep ; 26(12): 3246-3256.e4, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30893598

ABSTRACT

Tryptophan as the precursor of several active compounds, including kynurenine and serotonin, is critical for numerous important metabolic functions. Enhanced tryptophan metabolism toward the kynurenine pathway has been associated with myelodysplastic syndromes (MDSs), which are preleukemic clonal diseases characterized by dysplastic bone marrow and cytopenias. Here, we reveal a fundamental role for tryptophan metabolized along the serotonin pathway in normal erythropoiesis and in the physiopathology of MDS-related anemia. We identify, both in human and murine erythroid progenitors, a functional cell-autonomous serotonergic network with pro-survival and proliferative functions. In vivo studies demonstrate that pharmacological increase of serotonin levels using fluoxetine, a common antidepressant, has the potential to become an important therapeutic strategy in low-risk MDS anemia refractory to erythropoietin.


Subject(s)
Anemia/metabolism , Erythroid Precursor Cells/metabolism , Erythropoiesis/drug effects , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/pathology , Serotonin/pharmacology , Anemia/drug therapy , Anemia/pathology , Animals , Erythroid Precursor Cells/pathology , Female , Humans , Male , Mice , Mice, Knockout , Myelodysplastic Syndromes/drug therapy
18.
J Immunother Cancer ; 7(1): 29, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30717773

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC) treatment is currently restricted to chemotherapy. Hence, tumor-specific molecular targets and/or alternative therapeutic strategies for TNBC are urgently needed. Immunotherapy is emerging as an exciting treatment option for TNBC patients. The aspartic protease cathepsin D (cath-D), a marker of poor prognosis in breast cancer (BC), is overproduced and hypersecreted by human BC cells. This study explores whether cath-D is a tumor cell-associated extracellular biomarker and a potent target for antibody-based therapy in TNBC. METHODS: Cath-D prognostic value and localization was evaluated by transcriptomics, proteomics and immunohistochemistry in TNBC. First-in-class anti-cath-D human scFv fragments binding to both human and mouse cath-D were generated using phage display and cloned in the human IgG1 λ format (F1 and E2). Anti-cath-D antibody biodistribution, antitumor efficacy and in vivo underlying mechanisms were investigated in TNBC MDA-MB-231 tumor xenografts in nude mice. Antitumor effect was further assessed in TNBC patient-derived xenografts (PDXs). RESULTS: High CTSD mRNA levels correlated with shorter recurrence-free survival in TNBC, and extracellular cath-D was detected in the tumor microenvironment, but not in matched normal breast stroma. Anti-cath-D F1 and E2 antibodies accumulated in TNBC MDA-MB-231 tumor xenografts, inhibited tumor growth and improved mice survival without apparent toxicity. The Fc function of F1, the best antibody candidate, was essential for maximal tumor inhibition in the MDA-MB-231 model. Mechanistically, F1 antitumor response was triggered through natural killer cell activation via IL-15 upregulation, associated with granzyme B and perforin production, and the release of antitumor IFNγ cytokine. The F1 antibody also prevented the tumor recruitment of immunosuppressive tumor-associated macrophages M2 and myeloid-derived suppressor cells, a specific effect associated with a less immunosuppressive tumor microenvironment highlighted by TGFß decrease. Finally, the antibody F1 inhibited tumor growth of two TNBC PDXs, isolated from patients resistant or not to neo-adjuvant chemotherapy. CONCLUSION: Cath-D is a tumor-specific extracellular target in TNBC suitable for antibody-based therapy. Immunomodulatory antibody-based strategy against cath-D is a promising immunotherapy to treat patients with TNBC.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Cathepsin D/antagonists & inhibitors , Triple Negative Breast Neoplasms/drug therapy , Animals , Antibodies, Monoclonal/pharmacokinetics , Antineoplastic Agents, Immunological/pharmacokinetics , Cathepsin D/genetics , Cathepsin D/immunology , Cell Line, Tumor , Female , Humans , Immunotherapy , Mice, Nude , RNA, Messenger/metabolism , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
19.
Sci Rep ; 8(1): 16644, 2018 11 09.
Article in English | MEDLINE | ID: mdl-30413728

ABSTRACT

Mucopolysaccharidosis type VII (MPS VII) is a lysosomal storage disease caused by deficient ß-glucuronidase (ß-gluc) activity. Significantly reduced ß-gluc activity leads to accumulation of glycosaminoglycans (GAGs) in many tissues, including the brain. Numerous combinations of mutations in GUSB (the gene that codes for ß-gluc) cause a range of neurological features that make disease prognosis and treatment challenging. Currently, there is little understanding of the molecular basis for MPS VII brain anomalies. To identify a neuronal phenotype that could be used to complement genetic analyses, we generated two iPSC clones derived from skin fibroblasts of an MPS VII patient. We found that MPS VII neurons exhibited reduced ß-gluc activity and showed previously established disease-associated phenotypes, including GAGs accumulation, expanded endocytic compartments, accumulation of lipofuscin granules, more autophagosomes, and altered lysosome function. Addition of recombinant ß-gluc to MPS VII neurons, which mimics enzyme replacement therapy, restored disease-associated phenotypes to levels similar to the healthy control. MPS VII neural cells cultured as 3D neurospheroids showed upregulated GFAP gene expression, which was associated with astrocyte reactivity, and downregulation of GABAergic neuron markers. Spontaneous calcium imaging analysis of MPS VII neurospheroids showed reduced neuronal activity and altered network connectivity in patient-derived neurospheroids compared to a healthy control. These results demonstrate the interplay between reduced ß-gluc activity, GAG accumulation and alterations in neuronal activity, and provide a human experimental model for elucidating the bases of MPS VII-associated cognitive defects.


Subject(s)
Glycosaminoglycans/metabolism , Induced Pluripotent Stem Cells/pathology , Lysosomes/pathology , Mucopolysaccharidosis VII/pathology , Neural Pathways , Neurons/pathology , Stem Cells/pathology , Case-Control Studies , Cell Differentiation , Cells, Cultured , Humans , Induced Pluripotent Stem Cells/metabolism , Lysosomes/metabolism , Mucopolysaccharidosis VII/metabolism , Neurons/metabolism , Stem Cells/metabolism
20.
Oxid Med Cell Longev ; 2018: 7406946, 2018.
Article in English | MEDLINE | ID: mdl-29849911

ABSTRACT

One of the major insulin resistance instigators is excessive adiposity and visceral fat depots. Individually, exercise training and polyphenol intake are known to exert health benefits as improving insulin sensitivity. However, their combined curative effects on established obesity and insulin resistance need further investigation particularly on white adipose tissue alterations. Therefore, we compared the effects on different white adipose tissue depot alterations of a combination of exercise and grape polyphenol supplementation in obese insulin-resistant rats fed a high-fat diet to the effects of a high-fat diet alone or a nutritional supplementation of grape polyphenols (50 mg/kg/day) or exercise training (1 hr/day to 5 days/wk consisting of treadmill running at 32 m/min for a 10% slope), for a total duration of 8 weeks. Separately, polyphenol supplementation and exercise decreased the quantity of all adipose tissue depots and mesenteric inflammation. Exercise reduced adipocytes' size in all fat stores. Interestingly, combining exercise to polyphenol intake presents no more cumulative benefit on adipose tissue alterations than exercise alone. Insulin sensitivity was improved at systemic, epididymal, and inguinal adipose tissues levels in trained rats thus indicating that despite their effects on adipocyte morphological/metabolic changes, polyphenols at nutritional doses remain less effective than exercise in fighting insulin resistance.


Subject(s)
Adipose Tissue, White/drug effects , Diet, High-Fat , Obesity/etiology , Polyphenols/pharmacology , Adipose Tissue, White/metabolism , Adipose Tissue, White/pathology , Animals , Blood Glucose/analysis , Cholesterol/blood , Citrate (si)-Synthase/metabolism , Fatty Acids, Nonesterified/blood , Glucose Tolerance Test , I-kappa B Kinase/metabolism , Insulin Resistance , Leptin/blood , Male , Obesity/metabolism , Physical Conditioning, Animal , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Suppressor of Cytokine Signaling 3 Protein/metabolism , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...