Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 59(15): 11009-11019, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32673483

ABSTRACT

The lithium argyrodites Li6PS5X (X = Cl, Br, I) exhibit high lithium-ion conductivities, making them promising candidates for use in solid-state batteries. These solid electrolytes can show considerable substitutional X-/S2- anion disorder, typically correlated with higher lithium-ion conductivities. The atomic-scale effects of this anion site disorder within the host lattice-in particular how lattice disorder modulates the lithium substructure-are not well understood. Here, we characterize the lithium substructure in Li6PS5X as a function of temperature and anion site disorder, using Rietveld refinements against temperature-dependent neutron diffraction data. Analysis of these high-resolution diffraction data reveals an additional lithium position previously unreported for Li6PS5X argyrodites, suggesting that the lithium conduction pathway in these materials differs from the most common model proposed in earlier studies. An analysis of the Li+ positions and their radial distributions reveals that greater inhomogeneity of the local anionic charge, due to X-/S2- site disorder, is associated with more spatially diffuse lithium distributions. This observed coupling of site disorder and lithium distribution provides a possible explanation for the enhanced lithium transport in anion-disordered lithium argyrodites and highlights the complex interplay between the anion configuration and lithium substructure in this family of superionic conductors.

2.
Inorg Chem ; 58(14): 9236-9245, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31247817

ABSTRACT

Owing to their intrinsically low thermal conductivity and chemical diversity, materials within the I-V-VI2 family, and especially AgBiSe2, have recently attracted interest as promising thermoelectric materials. However, further investigations are needed in order to develop a more fundamental understanding of the origin of the low thermal conductivity in AgBiSe2, to evaluate possible stereochemical activity of the 6s2 lone pair of Bi3+, and to further elaborate on chemical design approaches for influencing the occurring phase transitions. In this work, a combination of temperature-dependent X-ray diffraction, Rietveld refinements of laboratory X-ray diffraction data, and pair distribution function analyses of synchrotron X-ray diffraction data is used to tackle the influence of Sb substitution within AgBi1-xSbxSe2 (0 ⩽ x ⩽ 0.15) on the phase transitions, local distortions, and off-centering of the structure. This work shows that, similar to other lone-pair-containing materials, local off-centering and distortions can be found in AgBiSe2. Furthermore, electronic and thermal transport measurements, in combination with the modeling of point-defect scattering, highlight the importance of structural characterizations toward understanding changes induced by elemental substitutions. This work provides new insights into the structure-transport correlations of the thermoelectric AgBiSe2.

3.
Inorg Chem ; 57(21): 13920-13928, 2018 Nov 05.
Article in English | MEDLINE | ID: mdl-30345753

ABSTRACT

Lithium-ion conducting argyrodites have recently attracted significant interest as solid electrolytes for solid-state battery applications. In order to enhance the utility of materials in this class, a deeper understanding of the fundamental structure-property relationships is still required. Using Rietveld refinements of X-ray diffraction data and pair distribution function analysis of neutron diffraction data, coupled with electrochemical impedance spectroscopy and speed of sound measurements, the structure and transport properties within Li6PS5- xSe xBr (0 ≤ x ≤ 1) have been monitored with increasing Se content. While it has been previously suggested that the incorporation of larger, more polarizable anions within the argyrodite lattice should lead to enhancements in the ionic conductivity, the Li6PS5- xSe xBr transport behavior was found to be largely unaffected by the incorporation of Se2- due to significant structural modifications to the anion sublattice. This work affirms the notion that, when optimizing the ionic conductivity of solid ion conductors, local structural influences cannot be ignored and the idea of "the softer the lattice, the better" does not always hold true.

SELECTION OF CITATIONS
SEARCH DETAIL
...