Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Anim Sci ; 4(1): 67-74, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32704967

ABSTRACT

Ractopamine hydrochloride (RAC) is a ß-adrenergic agonist approved for feeding during the last 28 to 42 d prior to cattle slaughter to improve feedlot performance and carcass characteristics. Three thousand crossbred yearling steers (527 ± 2.4 kg; AVG ± SD) were used in two periods to evaluate the effects of various RAC withdrawal times on feedlot performance, health, and carcass characteristics. In Period 1, 6 blocks of 30 pens totaling 1,500 steers were utilized, which was repeated for Period 2. In a randomized complete block design, cattle were assigned to 1 of 5 treatments consisting of 1) No RAC fed (CON), 2) 12-h RAC withdrawal (12-hRAC), 3) 2-d RAC withdrawal (2-dRAC), 4) 4-d RAC withdrawal (4-dRAC), and 5) 7-d RAC withdrawal (7-dRAC). Cattle were fed for a total of 62 d, and applicable treatments were supplemented with 30.0 ppm (dry matter basis) of RAC (average dose = 322 mg per steer per day) for 33 d at the end of the feeding period, corresponding to their respective withdrawal times. Initial body weight (BW) displayed a quadratic curve, with 2-dRAC and 4-dRAC withdrawal periods having the greatest BW. Accordingly, dry matter intake (DMI) responded quadratically (P = 0.034), with 2-dRAC and 4-dRAC treatments demonstrating the greatest DMI. No significant treatment differences (P ≥ 0.641) were observed in final live BW, average daily gain (ADG), or feed efficiency. Alternatively, when using a common dressing percentage to calculate live BW, cattle on RAC treatments exhibited 7.6 kg additional live BW (P < 0.001) compared to CON cattle. Furthermore, carcass-adjusted ADG and feed efficiency did not differ (P > 0.10) between RAC treatments but were improved compared to the CON treatment (P ≤ 0.002). Hot carcass weight (HCW) was on average 4.9 kg greater (P < 0.001) for RAC treatments vs. CON, and no differences were detected (P > 0.10) among RAC treatments. Within RAC treatments, carcass cutability responded quadratically (P ≤ 0.005) to withdrawal period, with the 2-dRAC and 4-dRAC treatments containing more Yield Grade 4 and 5 and fewer Yield Grade 1 and 2 carcasses than the other RAC treatments. On the basis of the results of this experiment, feeding RAC improves dressing percentage, HCW, and carcass-adjusted BW, ADG, and feed efficiency. Furthermore, extending the RAC withdrawal period to 7 d does not have a significant impact on cattle performance or health and has minimal effects on carcass characteristics.

2.
Transl Anim Sci ; 4(1): 102-117, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32704971

ABSTRACT

Growth-promoting technologies such as implants, ionophores, and ß-agonists improve feedlot performance, efficiency, and carcass characteristics of cattle. The objective of this experiment was to determine the effects of dose and duration of ractopamine hydrochloride (RH) on feedlot performance and carcass characteristics when fed to Holstein steers. A randomized complete block design was used with a 3 × 3 factorial arrangement of treatments with 3 RH doses (0, 300, or 400 mg∙steer-1∙d-1) fed for 3 durations (28, 35, or 42 d). Holstein steers (n = 855; initial body weight [BW] = 448 ± 37 kg) were blocked by BW and randomly allocated to 1 of 9 pens (15 blocks; 9 dose × duration treatment combinations) approximately 72 d before harvest. Weekly pen weights, chute temperament scores, and animal mobility were determined during the RH feeding period. At harvest, carcass data were collected on all steers, and tenderness was measured on steaks from 3 or 4 randomly selected steers from each pen and slice shear force (SSF) was determined on one steak selected from each side of the carcass after aging for 14 or 21 d. For feedlot performance, carcass characteristics, and SSF, no dose × duration interactions were observed (P ≥ 0.11). With increasing RH dose, average daily gain (ADG) and gain-to-feed ratio (G:F) increased linearly (P ≤ 0.01), whereas BW gain increased linearly with RH dose and duration (P ≤ 0.01). Hot carcass weight (P = 0.02) and longissimus muscle (LM) area (P ≤ 0.01) increased linearly with increasing RH dose. The percentage of carcasses in the USDA Yield Grade 2 category increased linearly (P ≤ 0.01) and percentage of carcasses in the USDA Yield Grade 4 category tended (P = 0.08) to decrease linearly as RH dose increased. In the 14-d aged steaks, the percentage of steaks with SSF ≤ 15.3 kg decreased linearly (P ≤ 0.01), whereas the percentage of steaks with ≥20.0 kg SSF increased linearly (P ≤ 0.01) with increasing RH dose. After 21-d aging, there was a tendency (P = 0.06) for a greater percentage of steaks from steers fed RH to have SSF ≥ 20.0 kg (2% of total steaks), but no difference (P ≥ 0.12) in the percentage of steaks with SSF ≤ 19.9 kg. Final chute temperament (P ≥ 0.45) and animal mobility (P ≥ 0.67) scores were not affected by feeding RH. Increasing the dose of RH (300 or 400 mg∙steer-1∙d-1) fed for 28 to 42 d before harvest increased ADG, G:F, hot carcass weight, and LM area when fed to Holstein steers with no negative effects on behavior or mobility. The percentage of steaks classified as not tender improved when steaks were aged for 21 d from steers treated with RH.

3.
Transl Anim Sci ; 4(1): 170-181, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32704977

ABSTRACT

Thin, beef, cull cows [n = 144; initial body weight (BW) = 465.8 ± 56.9 kg, initial body condition score (BCS) = 2.13 ± 0.68] were serially slaughtered to evaluate the relationship between ractopamine hydrochloride (RH) administration and days on feed (DOF) on feedlot performance and carcass cutout value in a lean cow market. Cows were organized into a 3 × 2 factorial arrangement of treatments (48 pens, 8 pens per treatment, 3 cows per pen) and blocked by BW nested within pregnancy status. Treatment pens were top-dressed 400 mg per cow per day of RH (Actogain 45; Zoetis, Parsippany, NJ) for the final 28 d prior to slaughter to cows spending 28, 42, or 56 DOF. Pen served as the experimental unit, for all calculations. No RH × DOF interactions were detected (P ≥ 0.11), indicating that despite a majority of compensatory gain occurring during the first 28 d of the trial, the magnitude of the RH response was not affected by DOF. Compared to controls, RH incited improvements in feedlot performance, but had a greater extent on carcass weight gain and efficiency. Specifically, RH improved average daily gain (ADG) by 13.7% (P = 0.04) and carcass ADG by 16.9% (P = 0.02) Cattle fed RH displayed a 15.5% improved gain to feed ratio (P = 0.02) and a 20% improved carcass gain to feed ratio (P = 0.05). Inclusion of RH in the finishing diet increased hot carcass weight by 4.5% (P = 0.05; 12.9 kg). However, supplementation of RH did not alter red meat yield (P ≥ 0.16), but provoked a 11.1% improvement in lean maturity (P < 0.01). Evaluation of the main effect of DOF provided insight into the compensatory state of beef cull cows on a high-concentrate diet. Serial slaughter offal weights presented confounding results. With additional DOF, a numerical increase in liver weights (P = 0.20) suggested that organ tissue replenishment occurred throughout the trial, and cattle experienced compensatory gain during the entire feeding phase. In contrast, lung and heart weights were not altered, while kidney tended to decrease linearly (P = 0.08) despite additional DOF. Furthermore, extending DOF generated a linear increase in dry matter intake (P < 0.01) yet a tendency for a decline in ADG (P = 0.10), reinforcing the premise that most of compensatory gain occurred during the first 28 d of the trial. If thin (BCS ≤ 4), healthy candidates can be finished, feeders can reap the benefits of an additive relationship between compensatory gain and RH.

4.
J Anim Sci ; 98(7)2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32619223

ABSTRACT

A randomized complete block design experiment with 32 yearling crossbred steers (average body weight [BW] = 442 ± 17.0 kg) fed a steam-flaked corn-based diet was used to evaluate the effects of dietary Zn (KemTRACE Zn propionate 27; Kemin Industries, Inc., Des Moines, IA) supplementation on live growth performance, skeletal muscle fiber, and beta-adrenergic receptor (ß-AR) characteristics during the finishing phase. Steers were blocked by BW (n = 4 blocks; 8 steers/block), assigned to pens (n = 4 steers/pen), and randomly assigned to the following treatments: control (CON; 0.0 g/[head (hd) · d] of additional Zn) or additional dietary Zn (ZnP; 1.0 g/[hd · d] additional Zn). The basal diet contained Zn (60 ppm dry matter basis) from ZnSO4; additional Zn was top-dressed at feeding. Ractopamine hydrochloride (RH; Optaflexx: Elanco Animal Health, Greenfield, IN) was included at 300 mg/(hd · d) for the final 28 d of the 111-d feeding period. Longissimus muscle biopsy samples, BW, and blood were obtained on days 0, 42, 79, and 107. Final BW was collected prior to shipping on day 111. Biopsy samples were used for immunohistochemical (IHC), mRNA, and protein analysis. Serum urea nitrogen (SUN) and nonesterified fatty acid (NEFA) concentrations were measured. Steers fed ZnP had a greater average daily gain (P = 0.02) and gain to feed ratio (G:F; P = 0.03) during the RH feeding period compared with CON. There were no differences (P > 0.05) in other growth performance variables, carcass traits, mRNA abundance, or relative protein concentration for fiber type and ß-AR. Fiber types I and IIA had no differences in the cross-sectional area; however, the IIX area was greater for CON (P < 0.04) compared with ZnP and increased (P < 0.02) over time. There were no differences between treatments for the ß1-AR density (P > 0.05) in skeletal muscle tissue throughout the study. A treatment × day interaction was observed in ß2-AR density (P = 0.02) and ß3-AR density (P = 0.02) during the RH feeding period, where the abundance of the receptors increased with ZnP but did not change in CON. Compared with CON, ZnP had greater (P < 0.01) mean NEFA concentrations. Mean SUN concentrations did increase by day (P < 0.01). Additional dietary Zn, supplied as Zn propionate, upregulates ß2-AR and ß3-AR and improves growth performance in feedlot steers during the RH feeding period, likely through a shift of resource utilization from lipogenesis to muscle maintenance and hypertrophy.


Subject(s)
Cattle , Dietary Supplements , Muscle Fibers, Skeletal/drug effects , Propionates/pharmacology , Animal Feed/analysis , Animals , Blood Urea Nitrogen , Body Composition/drug effects , Body Weight/drug effects , Cattle/growth & development , Cattle/metabolism , Diet/veterinary , Dietary Fiber/metabolism , Male , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Phenethylamines/administration & dosage , Phenethylamines/pharmacology , Propionates/administration & dosage
5.
Transl Anim Sci ; 3(1): 185-194, 2019 Jan.
Article in English | MEDLINE | ID: mdl-32704790

ABSTRACT

Feedgrade chlortetracycline (CTC) and oxytetracycline (OTC) are approved for use in beef cattle diets for the control of bovine respiratory disease (BRD). The objectives of this experiment were to compare CTC and OTC, administered according to label, for the treatment of BRD in Holstein calves and to characterize the influence of tulathromycin metaphylaxis in combination with tetracycline treatment. Summer-placed Holstein steer calves (n = 6,800) were randomly assigned to one of four treatments (11 blocks; initial BW = 140 ± 18 kg) as they passed through the squeeze chute at initial processing in a commercial feedlot. Treatments consisted of: (i) CTC and tulathromycin metaphylaxis (CTC+TUL), (ii) OTC and tulathromycin metaphylaxis (OTC+TUL), (iii) tulathromycin metaphylaxis only (TUL), or (iv) CTC only (CTC). Cattle were fed for an average of 118 d. Tetracycline feeding was instituted based on visual assessment of the attending veterinarian in accordance with the veterinary feed directive. When applicable, CTC was fed as a top-dress at a rate of 4 g CTC·steer-1·d-1 for 5 consecutive days, beginning on 6 d on feed (DOF). Three 5-d pulses were delivered to CTC+TUL and CTC cattle, with a 48-h time lapse between pulses. Cattle on OTC+TUL were administered 4 g OTC·steer-1·d-1 as part of a complete diet for 14 consecutive days beginning on 10 DOF. Within the first 30 d of the feeding period, BRD first pulls were reduced (P = 0.001) for CTC+TUL, OTC+TUL, and TUL relative to CTC alone. Percentage of BRD first pulls and total morbidity were lowest (P = 0.001) for CTC+TUL across the feeding period, with OTC+TUL and TUL being intermediate, and CTC alone exhibiting the highest percentage. Death loss and railers were not influenced (P ≥ 0.58) by treatment. Dry matter intake was greater (P = 0.001) for CTC+TUL than all other treatments. Final BW and ADG were greatest for CTC+TUL, lowest for TUL alone, and intermediate for the remaining treatments (P < 0.05) on a deads-and-railers-out basis. Deads-and-railers-in ADG was greatest (P < 0.05) for CTC+TUL compared to all other treatments. Feed conversion was not influenced (P ≥ 0.22) by treatment. In the current study, supplementation of OTC in combination with tulathromycin metaphylaxis did not benefit health over tulathromycin alone. Results suggest that CTC in combination with tulathromycin metaphylaxis reduces morbidity in Holstein steers calves, which may lead to improved performance.

6.
Innate Immun ; 18(4): 592-601, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22180563

ABSTRACT

The study examined the effect of chromium supplementation on the response of steers to an LPS challenge. Steers received a premix that added 0 (control; n = 10) or 0.2 mg/kg of chromium (n = 10) to the total diet on a dry matter basis for 56 d. Steers were fitted with jugular catheters and rectal temperature (RT) recording devices on d 52. Blood samples were collected and sickness behavior scores assigned to each steer relative to an LPS challenge (0.5 µg/kg) on d 55. Pre-LPS RT were greater in chromium-supplemented than in control steers. Post-LPS RT increased in both treatments, with control steers producing a greater change in RT than chromium-supplemented steers. Sickness behavior scores were greater in control than in chromium-supplemented steers post-LPS (P = 0.03). Cortisol concentrations did not differ between treatments pre-LPS. Post-LPS cortisol concentrations increased but did not differ due to treatment. Concentrations of IL-4 increased post-LPS but were not affected by treatment pre- or post-LPS. Treatment did not affect pre-LPS TNF-α or IFN-γ. Post-LPS TNF-α and IFN-γ increased in both treatments, with chromium-supplemented steers producing greater TNF-α (P = 0.005) and IFN-γ (P = 0.004) than control steers. Pre-LPS IL-6 was greater (P = 0.027) in chromium-supplemented steers than in control steers. Post-LPS IL-6 increased in both treatments and was greater (P < 0.001) in chromium-supplemented than in control steers. These data suggest that chromium supplementation enhances the acute phase response of steers to an LPS challenge, which may expedite recovery.


Subject(s)
Acute-Phase Reaction/immunology , Cytokines/metabolism , Endotoxemia/immunology , Propionates/administration & dosage , Acute-Phase Reaction/veterinary , Animals , Cattle , Cells, Cultured , Cytokines/genetics , Diet , Dietary Supplements , Disease Progression , Endotoxemia/veterinary , Gene Expression Regulation , Immunomodulation , Lipopolysaccharides/immunology , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...