Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 11(19)2022 09 29.
Article in English | MEDLINE | ID: mdl-36231032

ABSTRACT

Bone grafts can be engineered by differentiating human mesenchymal stromal cells (MSCs) via the endochondral and intramembranous ossification pathways. We evaluated the effects of each pathway on the properties of engineered bone grafts and their capacity to drive bone regeneration. Bone-marrow-derived MSCs were differentiated on silk scaffolds into either hypertrophic chondrocytes (hyper) or osteoblasts (osteo) over 5 weeks of in vitro cultivation, and were implanted subcutaneously for 12 weeks. The pathways' constructs were evaluated over time with respect to gene expression, composition, histomorphology, microstructure, vascularization and biomechanics. Hypertrophic chondrocytes expressed higher levels of osteogenic genes and deposited significantly more bone mineral and proteins than the osteoblasts. Before implantation, the mineral in the hyper group was less mature than that in the osteo group. Following 12 weeks of implantation, the hyper group had increased mineral density but a similar overall mineral composition compared with the osteo group. The hyper group also displayed significantly more blood vessel infiltration than the osteo group. Both groups contained M2 macrophages, indicating bone regeneration. These data suggest that, similar to the body's repair processes, endochondral pathway might be more advantageous when regenerating large defects, whereas intramembranous ossification could be utilized to guide the tissue formation pattern with a scaffold architecture.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Bone and Bones , Humans , Mesenchymal Stem Cells/metabolism , Neovascularization, Pathologic/metabolism , Silk/pharmacology , Tissue Engineering/methods
2.
Sci Transl Med ; 12(565)2020 10 14.
Article in English | MEDLINE | ID: mdl-33055244

ABSTRACT

Joint disorders can be detrimental to quality of life. There is an unmet need for precise functional reconstruction of native-like cartilage and bone tissues in the craniofacial space and particularly for the temporomandibular joint (TMJ). Current surgical methods suffer from lack of precision and comorbidities and frequently involve multiple operations. Studies have sought to improve craniofacial bone grafts without addressing the cartilage, which is essential to TMJ function. For the human-sized TMJ in the Yucatan minipig model, we engineered autologous, biologically, and anatomically matched cartilage-bone grafts for repairing the ramus-condyle unit (RCU), a geometrically intricate structure subjected to complex loading forces. Using image-guided micromilling, anatomically precise scaffolds were created from decellularized bone matrix and infused with autologous adipose-derived chondrogenic and osteogenic progenitor cells. The resulting constructs were cultured in a dual perfusion bioreactor for 5 weeks before implantation. Six months after implantation, the bioengineered RCUs maintained their predefined anatomical structure and regenerated full-thickness, stratified, and mechanically robust cartilage over the underlying bone, to a greater extent than either autologous bone-only engineered grafts or acellular scaffolds. Tracking of implanted cells and parallel bioreactor studies enabled additional insights into the progression of cartilage and bone regeneration. This study demonstrates the feasibility of TMJ regeneration using anatomically precise, autologous, living cartilage-bone grafts for functional, personalized total joint replacement. Inclusion of the adjacent tissues such as soft connective tissues and the TMJ disc could further extend the functional integration of engineered RCUs with the host.


Subject(s)
Quality of Life , Tissue Engineering , Animals , Cartilage , Humans , Swine , Swine, Miniature , Temporomandibular Joint , Tissue Scaffolds
3.
Tissue Eng Part A ; 24(11-12): 1022-1033, 2018 06.
Article in English | MEDLINE | ID: mdl-29373945

ABSTRACT

Perfusion bioreactors have been an effective tool in bone tissue engineering. Improved nutrient delivery and the application of shear forces have stimulated osteoblast differentiation and matrix production, allowing for generation of large, clinically sized constructs. Differentiation of hypertrophic chondrocytes has been considered an alternative strategy for bone tissue engineering. We studied the effects of perfusion on hypertrophic chondrocyte differentiation, matrix production, and subsequent bone formation. Hypertrophic constructs were created by differentiation in chondrogenic medium (2 weeks) and maturation in hypertrophic medium (3 weeks). Bioreactors were customized to study a range of flow rates (0-1200 µm/s). During chondrogenic differentiation, increased flow rates correlated with cartilage matrix deposition and the presence of collagen type X. During induced hypertrophic maturation, increased flow rates correlated with bone template deposition and the increased secretion of chondroprotective cytokines. Following an 8-week implantation into the critical-size femoral defect in nude rats, nonperfused constructs displayed larger bone volume, more compact mineralized matrix, and better integration with the adjacent native bone. Therefore, although medium perfusion stimulated the formation of bone template in vitro, it failed to enhance bone regeneration in vivo. However, the promising results of the less developed template in the critical-sized defect warrant further investigation, beyond interstitial flow, into the specific environment needed to optimize hypertrophic chondrocyte-based constructs for bone repair.


Subject(s)
Chondrocytes/cytology , Osteogenesis/physiology , Animals , Bone and Bones/cytology , Cartilage/metabolism , Cell Differentiation/physiology , Chondrogenesis/physiology , Perfusion , Rats , Rats, Nude , Tissue Engineering/methods
4.
Sci Transl Med ; 8(343): 343ra83, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27306665

ABSTRACT

Facial deformities require precise reconstruction of the appearance and function of the original tissue. The current standard of care-the use of bone harvested from another region in the body-has major limitations, including pain and comorbidities associated with surgery. We have engineered one of the most geometrically complex facial bones by using autologous stromal/stem cells, native bovine bone matrix, and a perfusion bioreactor for the growth and transport of living grafts, without bone morphogenetic proteins. The ramus-condyle unit, the most eminent load-bearing bone in the skull, was reconstructed using an image-guided personalized approach in skeletally mature Yucatán minipigs (human-scale preclinical model). We used clinically approved decellularized bovine trabecular bone as a scaffolding material and crafted it into an anatomically correct shape using image-guided micromilling to fit the defect. Autologous adipose-derived stromal/stem cells were seeded into the scaffold and cultured in perfusion for 3 weeks in a specialized bioreactor to form immature bone tissue. Six months after implantation, the engineered grafts maintained their anatomical structure, integrated with native tissues, and generated greater volume of new bone and greater vascular infiltration than either nonseeded anatomical scaffolds or untreated defects. This translational study demonstrates feasibility of facial bone reconstruction using autologous, anatomically shaped, living grafts formed in vitro, and presents a platform for personalized bone tissue engineering.


Subject(s)
Facial Bones/cytology , Tissue Engineering/methods , Animals , Bioreactors , Cattle , Osteogenesis/physiology , Swine , Tissue Scaffolds
5.
Stem Cell Res Ther ; 7(1): 56, 2016 Apr 18.
Article in English | MEDLINE | ID: mdl-27089917

ABSTRACT

For a long time, cartilage has been a major focus of the whole field of tissue engineering, both because of the constantly growing need for more effective options for joint repair and the expectation that this apparently simple tissue will be easy to engineer. After several decades, cartilage regeneration has proven to be anything but easy. With gratifying progress in our understanding of the factors governing cartilage development and function, and cell therapy being successfully used for several decades, there is still a lot to do. We lack reliable methods to generate durable articular cartilage that would resemble the original tissue lost to injury or disease. The question posed here is whether the answer would come from the methods using cells, biomaterials, or tissue engineering. We present a concise review of some of the most meritorious efforts in each area, and propose that the solution will most likely emerge from the ongoing attempts to recapitulate certain aspects of native cartilage development. While an ideal recipe for cartilage regeneration is yet to be formulated, we believe that it will contain cell, biomaterial, and tissue engineering approaches, blended into an effective method for seamless repair of articular cartilage.


Subject(s)
Biocompatible Materials/therapeutic use , Cartilage, Articular/drug effects , Chondrocytes/drug effects , Hydrogels/therapeutic use , Osteochondritis/therapy , Regeneration/drug effects , Aggrecans/genetics , Aggrecans/metabolism , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Cell- and Tissue-Based Therapy , Chondrocytes/cytology , Chondrocytes/metabolism , Chondrogenesis/drug effects , Collagen Type II/genetics , Collagen Type II/metabolism , Gene Expression Regulation , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Osteochondritis/genetics , Osteochondritis/metabolism , Osteochondritis/pathology , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Tissue Engineering/methods , Tissue Engineering/trends
6.
Acta Biomater ; 8(4): 1543-50, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22248525

ABSTRACT

Aggrecan (AGG) is a large, aggregating proteoglycan present throughout the body, but predominantly found in articular cartilage. The principle features of AGG, its hyaluronan (HA) binding domain and its abundance of covalently attached glycosaminoglycans (GAGs), make it an essential component of the functional ability of articular cartilage. Current tissue engineering constructs have attempted to stimulate AGG production, but have been unable to produce adequate amounts of mature AGG, and hence have suffered a mismatch in mechanical properties. To address these deficiencies, an AGG mimic was synthesized to match AGG functional properties and provide greater control within tissue engineering constructs. Chondroitin sulfate was functionalized with HA-specific binding peptides to replicate both the GAG presence and HA-binding ability of AGG, respectively. Upon characterization and testing, the mimic was able to effectively bind to HA, increase the compressive strength of cartilage extracellular matrix-based constructs, and protect the other extracellular matrix (ECM) components from degradation, replicating the important functions of AGG. In particular, the mimic produced a 78% increase in compressive strength of the ECM-based constructs, and was able to significantly reduce the degradation of both HA and collagen. The initial characterization of the newly synthesized AGG mimic demonstrates its potential in tissue engineering constructs, and provides an essential basis for more explorative studies of the AGG mimic's abilities as an AGG substitute and beyond.


Subject(s)
Aggrecans/chemistry , Biomimetic Materials/chemistry , Biomimetic Materials/chemical synthesis , Biomimetic Materials/metabolism , Collagen/metabolism , Cryoelectron Microscopy , Extracellular Matrix/metabolism , Hyaluronic Acid/metabolism , Nephelometry and Turbidimetry , Periodic Acid/chemistry , Rheology , Stress, Mechanical , Tissue Scaffolds , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...