Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-24032882

ABSTRACT

We study adaptive dynamics in games where players abandon the population at a given rate and are replaced by naive players characterized by a prior distribution over the admitted strategies. We demonstrate how such a process leads macroscopically to a variant of the replicator equation, with an additional term accounting for player turnover. We study how Nash equilibria and the dynamics of the system are modified by this additional term for prototypical examples such as the rock-paper-scissors game and different classes of two-action games played between two distinct populations. We conclude by showing how player turnover can account for nontrivial departures from Nash equilibria observed in data from lowest unique bid auctions.

2.
Phys Rev Lett ; 108(8): 088701, 2012 Feb 24.
Article in English | MEDLINE | ID: mdl-22463583

ABSTRACT

In lowest unique bid auctions, N players bid for an item. The winner is whoever places the lowest bid, provided that it is also unique. We use a grand canonical approach to derive an analytical expression for the equilibrium distribution of strategies. We then study the properties of the solution as a function of the mean number of players, and compare them with a large data set of internet auctions. The theory agrees with the data with striking accuracy for small population-size N, while for larger N a qualitatively different distribution is observed. We interpret this result as the emergence of two different regimes, one in which adaptation is feasible and one in which it is not. Our results question the actual possibility of a large population to adapt and find the optimal strategy when participating in a collective game.

3.
PLoS One ; 7(2): e29218, 2012.
Article in English | MEDLINE | ID: mdl-22347995

ABSTRACT

Localization of activity is ubiquitous in life, and also within sub-cellular compartments. Localization provides potential advantages as different proteins involved in the same cellular process may supplement each other on a fast timescale. It might also prevent proteins from being active in other regions of the cell. However localization is at odds with the spreading of unbound molecules by diffusion. We model the cost and gain for specific enzyme activity using localization strategies based on binding to sites of intermediate specificity. While such bindings in themselves decrease the activity of the protein on its target site, they may increase protein activity if stochastic motion allows the acting protein to touch both the intermediate binding site and the specific site simultaneously. We discuss this strategy in view of recent suggestions on long non-coding RNA as a facilitator of localized activity of chromatin modifiers.


Subject(s)
DNA-Binding Proteins/metabolism , DNA/chemistry , RNA-Binding Proteins/metabolism , RNA/chemistry , Binding Sites , Chromatin Assembly and Disassembly , DNA/metabolism , Protein Binding , RNA/metabolism
4.
BMC Evol Biol ; 11: 20, 2011 Jan 20.
Article in English | MEDLINE | ID: mdl-21251250

ABSTRACT

BACKGROUND: Evolution of metabolism occurs through the acquisition and loss of genes whose products acts as enzymes in metabolic reactions, and from a presumably simple primordial metabolism the organisms living today have evolved complex and highly variable metabolisms. We have studied this phenomenon by comparing the metabolic networks of 134 bacterial species with known phylogenetic relationships, and by studying a neutral model of metabolic network evolution. RESULTS: We consider the 'union-network' of 134 bacterial metabolisms, and also the union of two smaller subsets of closely related species. Each reaction-node is tagged with the number of organisms it belongs to, which we denote organism degree (OD), a key concept in our study. Network analysis shows that common reactions are found at the centre of the network and that the average OD decreases as we move to the periphery. Nodes of the same OD are also more likely to be connected to each other compared to a random OD relabelling based on their occurrence in the real data. This trend persists up to a distance of around five reactions. A simple growth model of metabolic networks is used to investigate the biochemical constraints put on metabolic-network evolution. Despite this seemingly drastic simplification, a 'union-network' of a collection of unrelated model networks, free of any selective pressure, still exhibit similar structural features as their bacterial counterpart. CONCLUSIONS: The OD distribution quantifies topological properties of the evolutionary history of bacterial metabolic networks, and lends additional support to the importance of horizontal gene transfer during bacterial metabolic evolution where new reactions are attached at the periphery of the network. The neutral model of metabolic network growth can reproduce the main features of real networks, but we observe that the real networks contain a smaller common core, while they are more similar at the periphery of the network. This suggests that natural selection and biochemical correlations can act both to diversify and to narrow down metabolic evolution.


Subject(s)
Bacteria/metabolism , Biological Evolution , Metabolic Networks and Pathways , Bacteria/genetics , Models, Biological
5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(1 Pt 2): 016111, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19658778

ABSTRACT

A system of agents moving along a road in both directions is studied numerically within a cellular-automata formulation. An agent steps to the right with probability q or to the left with 1-q when encountering other agents. Our model is restricted to two agent types, traffic-rule abiders (q=1) and traffic-rule ignorers (q=1/2) , and the traffic flow, resulting from the interaction between these two types of agents, which is obtained as a function of density and relative fraction. The risk for jamming at a fixed density, when starting from a disordered situation, is smaller when every agent abides by a traffic rule than when all agents ignore the rule. Nevertheless, the absolute minimum occurs when a small fraction of ignorers are present within a majority of abiders. The characteristic features for the spatial structure of the flow pattern are obtained and discussed.

6.
BMC Syst Biol ; 2: 25, 2008 Mar 04.
Article in English | MEDLINE | ID: mdl-18318890

ABSTRACT

BACKGROUND: The relationship between the regulatory design and the functionality of molecular networks is a key issue in biology. Modules and motifs have been associated to various cellular processes, thereby providing anecdotal evidence for performance based localization on molecular networks. RESULTS: To quantify structure-function relationship we investigate similarities of proteins which are close in the regulatory network of the yeast Saccharomyces Cerevisiae. We find that the topology of the regulatory network only show weak remnants of its history of network reorganizations, but strong features of co-regulated proteins associated to similar tasks. These functional correlations decreases strongly when one consider proteins separated by more than two steps in the regulatory network. The network topology primarily reflects the processes that is orchestrated by each individual hub, whereas there is nearly no remnants of the history of protein duplications. CONCLUSION: Our results suggests that local topological features of regulatory networks, including broad degree distributions, emerge as an implicit result of matching a number of needed processes to a finite toolbox of proteins.


Subject(s)
Computational Biology/methods , Gene Regulatory Networks , Neural Networks, Computer , Saccharomyces cerevisiae Proteins/classification , Databases, Protein , Gene Expression Regulation, Fungal , Gene Regulatory Networks/physiology , Genes, Fungal , Models, Genetic , Quantitative Structure-Activity Relationship , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Systems Biology/methods
7.
PLoS One ; 3(2): e1690, 2008 Feb 27.
Article in English | MEDLINE | ID: mdl-18301767

ABSTRACT

It is suggested that the degree distribution for networks of the cell-metabolism for simple organisms reflects a ubiquitous randomness. This implies that natural selection has exerted no or very little pressure on the network degree distribution during evolution. The corresponding random network, here termed the blind watchmaker network has a power-law degree distribution with an exponent gamma>/=2. It is random with respect to a complete set of network states characterized by a description of which links are attached to a node as well as a time-ordering of these links. No a priory assumption of any growth mechanism or evolution process is made. It is found that the degree distribution of the blind watchmaker network agrees very precisely with that of the metabolic networks. This implies that the evolutionary pathway of the cell-metabolism, when projected onto a metabolic network representation, has remained statistically random with respect to a complete set of network states. This suggests that even a biological system, which due to natural selection has developed an enormous specificity like the cellular metabolism, nevertheless can, at the same time, display well defined characteristics emanating from the ubiquitous inherent random element of Darwinian evolution. The fact that also completely random networks may have scale-free node distributions gives a new perspective on the origin of scale-free networks in general.


Subject(s)
Biological Evolution , Metabolism , Systems Biology , Statistical Distributions , Stochastic Processes
8.
Chaos ; 17(2): 026117, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17614704

ABSTRACT

Complex networks are mapped to a model of boxes and balls where the balls are distinguishable. It is shown that the scale-free size distribution of boxes maximizes the information associated with the boxes provided configurations including boxes containing a finite fraction of the total amount of balls are excluded. It is conjectured that for a connected network with only links between different nodes, the nodes with a finite fraction of links are effectively suppressed. It is hence suggested that for such networks the scale-free node-size distribution maximizes the information encoded on the nodes. The noise associated with the size distributions is also obtained from a maximum entropy principle. Finally, explicit predictions from our least bias approach are found to be borne out by metabolic networks.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(2 Pt 2): 026104, 2006 Aug.
Article in English | MEDLINE | ID: mdl-17025500

ABSTRACT

We extend the merging model for undirected networks by Kim [Eur. Phys. J. B 43, 369 (2004)] to directed networks and investigate the emerging scale-free networks. Two versions of the directed merging model, friendly and hostile merging, give rise to two distinct network types. We uncover that some nontrivial features of these two network types resemble two levels of a certain randomization/nonspecificity in the link reshuffling during network evolution. Furthermore, the same features show up, respectively, in metabolic networks and transcriptional networks. We introduce measures that single out the distinguishing features between the two prototype networks, as well as point out features that are beyond the prototypes.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(3 Pt 2): 036119, 2006 Sep.
Article in English | MEDLINE | ID: mdl-17025720

ABSTRACT

We generalize the degree-organizational view of real-world networks with broad degree distributions in a landscape analog with mountains (high-degree nodes) and valleys (low-degree nodes). For example, correlated degrees between adjacent nodes correspond to smooth landscapes (social networks), hierarchical networks to one-mountain landscapes (the Internet), and degree-disassortative networks without hierarchical features to rough landscapes with several mountains. To quantify the topology, we here measure the widths of the mountains and the separation between different mountains. We also generate ridge landscapes to model networks organized under constraints imposed by the space the networks are embedded in, associated to spatial or in molecular networks to functional localization.

SELECTION OF CITATIONS
SEARCH DETAIL
...