Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 6851, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36369423

ABSTRACT

Neuropsychiatric disorders are increasingly conceptualized as overlapping spectra sharing multi-level neurobiological alterations. However, whether transdiagnostic cortical alterations covary in a biologically meaningful way is currently unknown. Here, we studied co-alteration networks across six neurodevelopmental and psychiatric disorders, reflecting pathological structural covariance. In 12,024 patients and 18,969 controls from the ENIGMA consortium, we observed that co-alteration patterns followed normative connectome organization and were anchored to prefrontal and temporal disease epicenters. Manifold learning revealed frontal-to-temporal and sensory/limbic-to-occipitoparietal transdiagnostic gradients, differentiating shared illness effects on cortical thickness along these axes. The principal gradient aligned with a normative cortical thickness covariance gradient and established a transcriptomic link to cortico-cerebello-thalamic circuits. Moreover, transdiagnostic gradients segregated functional networks involved in basic sensory, attentional/perceptual, and domain-general cognitive processes, and distinguished between regional cytoarchitectonic profiles. Together, our findings indicate that shared illness effects occur in a synchronized fashion and along multiple levels of hierarchical cortical organization.


Subject(s)
Connectome , Mental Disorders , Humans , Cerebral Cortex/pathology , Cerebellum , Attention , Magnetic Resonance Imaging
2.
Neuroimage ; 236: 118011, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33852941

ABSTRACT

The hippocampus is a highly plastic brain structure supporting functions central to human cognition. Morphological changes in the hippocampus have been implicated in development, aging, as well as in a broad range of neurological and psychiatric disorders. A growing body of research suggests that hippocampal plasticity is closely linked to the actions of brain-derived neurotrophic factor (BDNF). However, evidence on the relationship between hippocampal volume (HCV) and peripheral BDNF levels is scarce and limited to elderly and patient populations. Further, despite evidence that BDNF expression differs throughout the hippocampus and is implicated in adult neurogenesis specifically in the dentate gyrus, no study has so far related peripheral BDNF levels to the volumes of individual hippocampal subfields. Besides its clinical implications, BDNF-facilitated hippocampal plasticity plays an important role in regulating cognitive and affective processes. In the current registered report, we investigated how serum BDNF (sBDNF) levels relate to volumes of the hippocampal formation and its subfields in a large sample of healthy adults (N = 279, 160 f) with a broad age range (20-55 years, mean 40.5) recruited in the context of the ReSource Project. We related HCV to basal sBDNF and, in a subsample (n = 103, 57 f), to acute stress-reactive change in sBDNF. We further tested the role of age as a moderator of both associations. Contrary to our hypotheses, neither basal sBDNF levels nor stress-reactive sBDNF change were associated with total HCV or volume of the dentate gyrus/cornu ammonis 4 (DG/CA4) subfield. We also found no evidence for a moderating effect of age on any of these associations. Our null results provide a first point of reference on the relationship between sBDNF and HCV in healthy mid-age, in contrast to patient or aging populations. We suggest that sBDNF levels have limited predictive value for morphological differences of the hippocampal structure when notable challenge to its neuronal integrity or to neurotrophic capacity is absent.


Subject(s)
Brain-Derived Neurotrophic Factor/blood , Hippocampus/anatomy & histology , Adult , Dentate Gyrus/anatomy & histology , Dentate Gyrus/diagnostic imaging , Female , Hippocampus/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Young Adult
3.
Neurology ; 76(2): 138-44, 2011 Jan 11.
Article in English | MEDLINE | ID: mdl-21148116

ABSTRACT

OBJECTIVE: Converging evidence suggests that abnormalities of brain development may play a role in the pathogenesis of temporal lobe epilepsy (TLE). As sulco-gyral patterns are thought to be a footprint of cortical development, we set out to quantitatively map folding complexity across the neocortex in TLE. Additionally, we tested whether there was a relationship between cortical complexity and features of hippocampal maldevelopment, commonly referred to as malrotation. METHODS: To quantify folding complexity, we obtained whole-brain surface-based measures of absolute mean cortical curvature from MRI scans acquired in 43 drug-resistant patients with TLE with unilateral hippocampal atrophy, and 40 age- and sex-matched healthy controls. In patients, we correlated changes in cortical curvature with 3-dimensional measures of hippocampal positioning. RESULTS: We found increased folding complexity in the temporolimbic cortices encompassing parahippocampal, temporopolar, insular, and fronto-opercular regions. Increased complexity was observed ipsilateral to the seizure focus in patients with left TLE (LTLE), whereas these changes were bilateral in patients with right TLE (RTLE). In both TLE groups, increased temporolimbic complexity was associated with increased hippocampal malrotation. We found tendencies for increased complexity in bilateral posterior temporal cortices in LTLE and contralateral parahippocampal cortices in RTLE to be predictive of unfavorable seizure outcome after surgery. CONCLUSION: The anatomic distribution of increased cortical complexity overlapping with limbic seizure networks in TLE and its association with hippocampal maldevelopment further imply that neurodevelopmental factors may play a role in the epileptogenic process of TLE.


Subject(s)
Epilepsy, Temporal Lobe/pathology , Hippocampus/pathology , Magnetic Resonance Imaging , Temporal Lobe/pathology , Adult , Cerebral Cortex/pathology , Female , Frontal Lobe/pathology , Functional Laterality , Humans , Limbic System/pathology , Male , Middle Aged , Neocortex/pathology , Parahippocampal Gyrus/pathology
4.
Neurology ; 72(20): 1747-54, 2009 May 19.
Article in English | MEDLINE | ID: mdl-19246420

ABSTRACT

BACKGROUND: Whether recurrent epileptic seizures induce brain damage is debated. Disease progression in epilepsy has been evaluated only in a few community-based studies involving patients with seizures well controlled by medication. These studies concluded that epilepsy does not inevitably lead to global cerebral damage. OBJECTIVE: To track the progression of neocortical atrophy in pharmacoresistant temporal lobe epilepsy (TLE) using longitudinal and cross-sectional designs. METHODS: Using a fully automated measure of cortical thickness on MRI, we studied a homogeneous sample of patients with pharmacoresistant TLE. In the longitudinal analysis (n = 18), fixed-effect models were used to quantify cortical atrophy over a mean interscan interval of 2.5 years (range = 7 to 90 months). In the cross-sectional analysis (n = 121), we correlated epilepsy duration and thickness. To dissociate normal aging from pathologic progression, we compared aging effects in TLE to healthy controls. RESULTS: The longitudinal analysis mapped progression in ipsilateral temporopolar and central and contralateral orbitofrontal, insular, and angular regions. In patients with more than 14 years of disease, atrophy progressed more rapidly in frontocentral and parietal regions that in those with shorter duration. The cross-sectional study showed progressive atrophy in the mesial and superolateral frontal, and parietal cortices. CONCLUSIONS: Our combined cross-sectional and longitudinal analysis in patients with pharmacoresistant temporal lobe epilepsy demonstrated progressive neocortical atrophy over a mean interval of 2.5 years that is distinct from normal aging, likely representing seizure-induced damage. The cumulative character of atrophy underlies the importance of early surgical treatment in this group of patients.


Subject(s)
Anticonvulsants/therapeutic use , Atrophy , Cerebral Cortex/pathology , Epilepsy, Temporal Lobe , Adolescent , Adult , Aged , Atrophy/etiology , Atrophy/pathology , Cerebral Cortex/anatomy & histology , Child , Cross-Sectional Studies , Disease Progression , Epilepsy, Temporal Lobe/complications , Epilepsy, Temporal Lobe/pathology , Epilepsy, Temporal Lobe/therapy , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...