Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 254
Filter
Add more filters










Publication year range
1.
J Nat Prod ; 87(5): 1471-1478, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38747559

ABSTRACT

A chemical investigation of Australian soil-derived bacteria Actinomadura sp. S4S-00069B08 yielded eight new benzenoid ansamycins, goondansamycins A-H. Goondansamycins feature rare 1,4-benzoxazin-3-one or o-diamino-p-benzoquinone moieties and can exist as both aglycones or 9-O-α-glycosides of either d-rhodinose or d-amicetose. Structures were solved on the basis of detailed spectroscopy, including X-ray analysis.


Subject(s)
Actinomadura , Soil Microbiology , Australia , Molecular Structure , Benzoquinones/chemistry , Benzoquinones/pharmacology , Crystallography, X-Ray
2.
J Inorg Biochem ; 256: 112539, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38593609

ABSTRACT

Motivated by the ambition to establish an enzyme-driven bioleaching pathway for copper extraction, properties of the Type-1 copper protein rusticyanin from Acidithiobacillus ferrooxidans (AfR) were compared with those from an ancestral form of this enzyme (N0) and an archaeal enzyme identified in Ferroplasma acidiphilum (FaR). While both N0 and FaR show redox potentials similar to that of AfR their electron transport rates were significantly slower. The lack of a correlation between the redox potentials and electron transfer rates indicates that AfR and its associated electron transfer chain evolved to specifically facilitate the efficient conversion of the energy of iron oxidation to ATP formation. In F. acidiphilum this pathway is not as efficient unless it is up-regulated by an as of yet unknown mechanism. In addition, while the electrochemical properties of AfR were consistent with previous data, previously unreported behavior was found leading to a form that is associated with a partially unfolded form of the protein. The cyclic voltammetry (CV) response of AfR immobilized onto an electrode showed limited stability, which may be connected to the presence of the partially unfolded state of this protein. Insights gained in this study may thus inform the engineering of optimized rusticyanin variants for bioleaching processes as well as enzyme-catalyzed solubilization of copper-containing ores such as chalcopyrite.


Subject(s)
Azurin , Models, Molecular , Kinetics , Electrochemistry , Azurin/chemistry , Azurin/genetics , Azurin/metabolism , Actinobacteria/chemistry , Thermoplasmales/chemistry , Electron Spin Resonance Spectroscopy , Protein Structure, Tertiary , Iron/metabolism , Oxidation-Reduction , Biotechnology , Protein Stability , Conserved Sequence/genetics
4.
Dalton Trans ; 53(18): 7828-7838, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38624161

ABSTRACT

This study investigates the influence of ligand charge on transition energies in a series of CuN2S2 complexes based on dithiocarbazate Schiff base ligands using Cu K-edge X-ray absorption spectroscopy (XAS) and Kß valence-to-core (VtC) X-ray emission spectroscopy (XES). By comparing the formally Cu(II) complexes [CuII(HL1)] (HL12- = dimethyl pentane-2,4-diylidenebis[carbonodithiohydrazonate]) and [CuII(HL2)] (HL22- = dibenzyl pentane-2,4-diylidenebis[carbonodithiohydrazonate]) and the formally Cu(III) complex [CuIII(L2)], distinct changes in transition energies are observed, primarily attributed to the metal oxidation state. Density functional theory (DFT) calculations demonstrate how an increased negative charge on the deprotonated L23- ligand stabilizes the Cu(III) center through enhanced charge donation, modulating the core transition energies. Overall, significant shifts to higher energies are noted upon metal oxidation, emphasizing the importance of scrutinizing ligand structure in XAS/VtC XES analysis. The data further support the redox-innocent role of the Schiff base ligands and underscore the criticality of ligand protonation levels in future spectroscopic studies, particularly for catalytic intermediates. The combined XAS-VtC XES methodology validates the Cu(III) oxidation state assignment while offering insights into ligand protonation effects on core-level spectroscopic transitions.

5.
Inorg Chem ; 63(14): 6453-6464, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38526552

ABSTRACT

Copper-catalyzed electrochemical atom transfer radical addition (eATRA) is a new method for the creation of new C-C bonds under mild conditions. In this work, we have explored the reactivity of an analogous series of N4 macrocyclic CuII complexes as eATRA precatalysts, which are primed by reduction to their monovalent oxidation state. These complexes were fully characterized structurally, spectroscopically, and electrochemically. A spectrum of radical activation reactivity was found across the series [CuI(Me4cyclen)(NCMe)]+ (Me4cyclen = 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane), [CuI(Me4cyclam)(NCMe)]+ (Me4cyclam = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), and [CuI(Me2py2clen)(NCMe)]+ (Me2py2clen = 3,7-dimethyl-3,7-diaza-1,5(2,6)-dipyridinacyclo-octaphane). The rate of radical production by [Cu(Me2py2clen)(NCMe)]+ was modest, but rapid radical capture to form the organocopper complex [CuI(Me2py2clen)(CH2CN)] led to a dramatic acceleration in catalysis, greater than seen in any comparable Cu complex, but this led to rapid radical self-termination instead of radical addition.

6.
J Steroid Biochem Mol Biol ; 239: 106479, 2024 May.
Article in English | MEDLINE | ID: mdl-38346478

ABSTRACT

Oxidised derivatives of cholesterol have been shown to inhibit the growth of Mycobacterium tuberculosis (Mtb). The bacteriostatic activity of these compounds has been attributed to their inhibition of CYP125A1 and CYP142A1, two metabolically critical cytochromes P450 that initiate degradation of the sterol side chain. Here, we synthesise and characterise an extensive library of 28 cholesterol derivatives to develop a structure-activity relationship for this class of inhibitors. The candidate compounds were evaluated for MIC with virulent Mtb and in binding studies with CYP125A1 and CYP142A1 from Mtb.


Subject(s)
Mycobacterium tuberculosis , Cytochrome P-450 Enzyme System/metabolism , Cholesterol/metabolism , Structure-Activity Relationship
7.
Org Lett ; 26(14): 2827-2831, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38253345

ABSTRACT

The first synthesis of the 5-aza[1.0]triblattane skeleton was achieved through a [4 + 2] cycloaddition approach using a suitably protected azetine and cyclopentadiene. A series of azetines were synthesized to explore both stability and suitable N-protection. The key step following cycloaddition utilized a noninitiated protonated aminyl radical cyclization to install the final 5-azatriblattane bond, but it was found to be considerably more unstable than the 6-aza isomer under acidic conditions.

8.
Chem Sci ; 15(3): 974-990, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38239703

ABSTRACT

The di-2-pyridylthiosemicarbazone (DpT) analogs demonstrate potent and selective anti-proliferative activity against human tumors. The current investigation reports the synthesis and chemical and biological characterization of the Fe(iii), Co(iii), Ni(ii), Cu(ii), Zn(ii), Ga(iii), and Pd(ii) complexes of the promising second generation DpT analog, di-2-pyridylketone-4-ethyl-4-methyl-3-thiosemicarbazone (Dp4e4mT). These studies demonstrate that the Dp4e4mT Co(iii), Ni(ii), and Pd(ii) complexes display distinct biological activity versus those with Cu(ii), Zn(ii), and Ga(iii) regarding anti-proliferative efficacy against cancer cells and a detrimental off-target effect involving oxidation of oxy-myoglobin (oxy-Mb) and oxy-hemoglobin (oxy-Hb). With regards to anti-proliferative activity, the Zn(ii) and Ga(iii) Dp4e4mT complexes demonstrate facile transmetallation with Cu(ii), resulting in efficacy against tumor cells that is strikingly similar to the Dp4e4mT Cu(ii) complex (IC50: 0.003-0.006 µM and 72 h). Relative to the Zn(ii) and Ga(iii) Dp4e4mT complexes, the Dp4e4mT Ni(ii) complex demonstrates kinetically slow transmetallation with Cu(ii) and intermediate anti-proliferative effects (IC50: 0.018-0.076 µM after 72 h). In contrast, the Co(iii) and Pd(ii) complexes demonstrate poor anti-proliferative activity (IC50: 0.262-1.570 µM after 72 h), probably due to a lack of transmetallation with Cu(ii). The poor efficacy of the Dp4e4mT Co(iii), Ni(ii), and Pd(ii) complexes to transmetallate with Fe(iii) markedly suppresses the oxidation of oxy-Mb and oxy-Hb. In contrast, the 2 : 1 Dp4e4mT: Cu(ii), Zn(ii), and Ga(iii) complexes demonstrate facile reactions with Fe(iii), leading to the redox active Dp4e4mT Fe(iii) complex and oxy-Mb and oxy-Hb oxidation. This study demonstrates the key role of differential transmetallation of Dp4e4mT complexes that has therapeutic ramifications for their use as anti-cancer agents.

9.
Chemistry ; 30(3): e202303133, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37823679

ABSTRACT

Homocubane, a highly strained cage hydrocarbon, contains two very different positions for the introduction of a nitrogen atom into the skeleton, e. g., a position 1 exchange results in a tertiary amine whereas position 9 yields a secondary amine. Herein reported is the synthesis of 9-azahomocubane along with associated structural characterization, physical property analysis and chemical reactivity. Not only is 9-azahomocubane readily synthesized, and found to be stable as predicted, the basicity of the secondary amine was observed to be significantly lower than the structurally related azabicyclo[2.2.1]heptane, although similar to 1-azahomocubane.

10.
J Am Chem Soc ; 145(47): 25850-25863, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37967365

ABSTRACT

The oxygen-tolerant and molybdenum-dependent formate dehydrogenase FdsDABG from Cupriavidus necator is capable of catalyzing both formate oxidation to CO2 and the reverse reaction (CO2 reduction to formate) at neutral pH, which are both reactions of great importance to energy production and carbon capture. FdsDABG is replete with redox cofactors comprising seven Fe/S clusters, flavin mononucleotide, and a molybdenum ion coordinated by two pyranopterin dithiolene ligands. The redox potentials of these centers are described herein and assigned to specific cofactors using combinations of potential-dependent continuous wave and pulse EPR spectroscopy and UV/visible spectroelectrochemistry on both the FdsDABG holoenzyme and the FdsBG subcomplex. These data represent the first redox characterization of a complex metal dependent formate dehydrogenase and provide an understanding of the highly efficient catalytic formate oxidation and CO2 reduction activity that are associated with the enzyme.


Subject(s)
Cupriavidus necator , Molybdenum , Molybdenum/chemistry , Formate Dehydrogenases/chemistry , Cupriavidus necator/metabolism , Carbon Dioxide/chemistry , Oxidation-Reduction , Formates
11.
J Med Chem ; 66(22): 15453-15476, 2023 11 23.
Article in English | MEDLINE | ID: mdl-37922410

ABSTRACT

The di-2-pyridylketone thiosemicarbazones demonstrated marked anticancer efficacy, prompting progression of DpC to clinical trials. However, DpC induced deleterious oxy-myoglobin oxidation, stifling development. To address this, novel substituted phenyl thiosemicarbazone (PPP4pT) analogues and their Fe(III), Cu(II), and Zn(II) complexes were prepared. The PPP4pT analogues demonstrated potent antiproliferative activity (IC50: 0.009-0.066 µM), with the 1:1 Cu:L complexes showing the greatest efficacy. Substitutions leading to decreased redox potential of the PPP4pT:Cu(II) complexes were associated with higher antiproliferative activity, while increasing potential correlated with increased redox activity. Surprisingly, there was no correlation between redox activity and antiproliferative efficacy. The PPP4pT:Fe(III) complexes attenuated oxy-myoglobin oxidation significantly more than the clinically trialed thiosemicarbazones, Triapine, COTI-2, and DpC, or earlier thiosemicarbazone series. Incorporation of phenyl- and styryl-substituents led to steric blockade, preventing approach of the PPP4pT:Fe(III) complexes to the heme plane and its oxidation. The 1:1 Cu(II):PPP4pT complexes were inert to transmetalation and did not induce oxy-myoglobin oxidation.


Subject(s)
Antineoplastic Agents , Thiosemicarbazones , Myoglobin , Ferric Compounds , Drug Screening Assays, Antitumor , Structure-Activity Relationship , Thiosemicarbazones/pharmacology , Oxidation-Reduction , Antineoplastic Agents/pharmacology , Copper
12.
Inorg Chem ; 62(38): 15575-15583, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37712595

ABSTRACT

The utility and scope of Cu-catalyzed halogen atom transfer chemistry have been exploited in the fields of atom transfer radical polymerization and atom transfer radical addition, where the metal plays a key role in radical formation and minimizing unwanted side reactions. We have shown that electrochemistry can be employed to modulate the reactivity of the Cu catalyst between its active (CuI) and dormant (CuII) states in a variety of ligand systems. In this work, a macrocyclic pyridinophane ligand (L1) was utilized, which can break the C-Br bond of BrCH2CN to release •CH2CN radicals when in complex with CuI. Moreover, the [CuI(L1)]+ complex can capture the •CH2CN radical to form a new species [CuII(L1)(CH2CN)]+ in situ that, on reduction, exhibits halogen atom transfer reactivity 3 orders of magnitude greater than its parent complex [CuI(L1)]+. This unprecedented rate acceleration has been identified by electrochemistry, successfully reproduced by simulation, and exploited in a Cu-catalyzed bulk electrosynthesis where [CuII(L1)(CH2CN)]+ participates as a radical donor in the atom transfer radical addition of BrCH2CN to a selection of styrenes. The formation of these turbocharged catalysts in situ during electrosynthesis offers a new approach to the Cu-catalyzed organic reaction methodology.

13.
J Phys Chem B ; 127(39): 8382-8392, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37728992

ABSTRACT

The bacterial molybdenum (Mo)-containing formate dehydrogenase (FdsDABG) from Cupriavidus necator is a soluble NAD+-dependent enzyme belonging to the DMSO reductase family. The holoenzyme is complex and possesses nine redox-active cofactors including a bis(molybdopterin guanine dinucleotide) (bis-MGD) active site, seven iron-sulfur clusters, and 1 equiv of flavin mononucleotide (FMN). FdsDABG catalyzes the two-electron oxidation of HCOO- (formate) to CO2 and reversibly reduces CO2 to HCOO- under physiological conditions close to its thermodynamic redox potential. Here we develop an electrocatalytically active formate oxidation/CO2 reduction system by immobilizing FdsDABG on a glassy carbon electrode in the presence of coadsorbents such as chitosan and glutaraldehyde. The reversible enzymatic interconversion between HCOO- and CO2 by FdsDABG has been realized with cyclic voltammetry using a range of artificial electron transfer mediators, with methylene blue (MB) and phenazine methosulfate (PMS) being particularly effective as electron acceptors for FdsDABG in formate oxidation. Methyl viologen (MV) acts as both an electron acceptor (MV2+) in formate oxidation and an electron donor (MV+•) for CO2 reduction. The catalytic voltammetry was reproduced by electrochemical simulation across a range of sweep rates and concentrations of formate and mediators to provide new insights into the kinetics of the FdsDABG catalytic mechanism.


Subject(s)
Cupriavidus necator , Formate Dehydrogenases , Formate Dehydrogenases/chemistry , Carbon Dioxide/chemistry , Oxidation-Reduction , Formates
14.
J Org Chem ; 88(18): 12867-12871, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37647582

ABSTRACT

seco-1-Azacubane-2-carboxylic acid, an unusual and sterically constrained amino acid, was found to undergo amide bond formation at both the N- and C-termini using proline based bioactive molecule templates as a concept platform.

15.
Inorg Chem ; 62(11): 4662-4671, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36877141

ABSTRACT

Organocopper(II) reagents are an unexplored frontier of copper catalysis. Despite being proposed as reactive intermediates, an understanding of the stability and reactivity of the CuII-C bond has remained elusive. Two main pathways can be considered for the cleavage mode of a CuII-C bond: homolysis and heterolysis. We recently showed how organocopper(II) reagents can react with alkenes via radical addition, a homolytic pathway. In this work, the decomposition of the complex [CuIILR]+ [L = tris(2- dimethylaminoethyl)amine, Me6tren, R = NCCH2-] in the absence and presence of an initiator (RX, X = Cl, Br) was evaluated. When no initiator was present, first-order CuII-C bond homolysis occurred producing [CuIL]+ and succinonitrile, via radical termination. When an excess of the initiator was present, a subsequent formation of [CuIILX]+ via a second-order reaction was found, which results from the reaction of [CuIL]+ with RX following homolysis. However, when Brønsted acids (R'-OH: R' = H, Me, Ph, PhCO) were present, heterolytic cleavage of the CuII-C bond produced [CuIIL(OR')]+ and MeCN. Kinetic studies were undertaken to obtain the thermal (ΔH⧧, ΔS⧧) and pressure (ΔV⧧) activation parameters and deuterium kinetic isotopic effects, which provided an understanding of the strength of the CuII-C bond and the nature of the transition state for the reactions involved. These results reveal possible reaction pathways for organocopper(II) complexes relevant to their applications as catalysts in C-C bond forming reactions.

16.
Chem Sci ; 14(11): 2821-2825, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36937576

ABSTRACT

Highly strained cage hydrocarbons have long stood as fundamental molecules to explore the limits of chemical stability and reactivity, probe physical properties, and more recently as bioactive molecules and in materials discovery. Interestingly, the nitrogenous congeners have attracted much less attention. Previously absent from the literature, azahomocubanes, offer an opportunity to investigate the effects of a nitrogen atom when incorporated into a highly constrained polycyclic environment. Herein disclosed is the synthesis of 1-azahomocubane, accompanied by comprehensive structural characterization, physical property analysis and chemical reactivity. These data support the conclusion that nitrogen is remarkably well tolerated in a highly strained environment.

17.
Inorg Chem ; 62(4): 1328-1340, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36651855

ABSTRACT

In this work, the Na3[Ln(ODA)3]·2NaClO4·6H2O (Ln = Ce-Yb; ODA = oxydiacetate) series was analyzed with the ab initio ligand field theory (AILFT) module of the ORCA computational suite. The results were discussed within the framework of the angular overlap model (AOM) and compared to literature data. We find that the structural changes observed across the series exemplifies the effects of the lanthanide contraction also manifesting in the value of the AOM parameters. It is also shown that the complete active space self-consistent field (CASSCF) methodology is sufficient to describe the ligand field interactions in mononuclear lanthanide complexes, and the effects of dynamic correlation, through n-electron valence state perturbation theory (NEVPT2), are discussed. The calculated ligand field parameters of the present work are compared to the experimentally derived values from the literature.

18.
J Med Chem ; 66(2): 1426-1453, 2023 01 26.
Article in English | MEDLINE | ID: mdl-36649565

ABSTRACT

A novel, potent, and selective antitumor agent, namely (E)-3-phenyl-1-(2-pyridinyl)-2-propen-1-one 4,4-dimethyl-3-thiosemicarbazone (PPP44mT), and its analogues were synthesized and characterized and displayed strikingly distinctive properties. This activity was mediated by the inclusion of a styrene moiety, which through steric and electrochemical mechanisms prevented deleterious oxy-myoglobin or oxy-hemoglobin oxidation relative to other potent thiosemicarbazones, i.e., di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) or di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT). Structure-activity relationship analysis demonstrated specific tuning of PPP44mT electrochemistry further inhibited oxy-myoglobin or oxy-hemoglobin oxidation. Both PPP44mT and its Cu(II) complexes showed conspicuous almost immediate cytotoxicity against SK-N-MC tumor cells (within 3 h). In contrast, [Zn(PPP44mT)2] demonstrated a pronounced delay in activity, taking 48 h before marked antiproliferative efficacy was apparent. As such, [Zn(PPP44mT)2] was designated as a "stealth Zn(II) complex" that overcomes the near immediate cytotoxicity of PPP44mT or its copper complexes. Upon examination of the suppression of oncogenic signaling, [Zn(PPP44mT)2] was superior at inhibiting cyclin D1 expression compared to DpC or Dp44mT.


Subject(s)
Antineoplastic Agents , Thiosemicarbazones , Cell Line, Tumor , Zinc/chemistry , Myoglobin , Antineoplastic Agents/chemistry , Thiosemicarbazones/chemistry , Hemoglobins , Styrenes , Heme , Copper/metabolism
19.
Chemistry ; 29(20): e202203072, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36648073

ABSTRACT

In contrast to their molybdenum dependent relatives, tungsten enzymes operate at significantly lower redox potentials, and in some cases they can carry out reversible redox transformations of their substrates and products. Still, the electrochemical properties of W enzymes have received much less attention than their Mo relatives. Herein we analyse the tungsten enzyme aldehyde oxidoreductase (AOR) from the mesophilic bacterium Aromatoleum aromaticum which has been immobilised on a glassy carbon working electrode. This generates a functional system that electrochemically oxidises a wide variety of aromatic and aliphatic aldehydes in the presence of the electron transfer mediators benzyl viologen, methylene blue or dichlorophenol indophenol. Simulation of the cyclic voltammetry has enabled a thorough kinetic analysis of the system, which reveals that methylene blue acts as a two-electron acceptor. In contrast, the other two mediators act as single electron oxidants. The different electrochemical driving forces imparted by these mediators also lead to significantly different outer sphere electron transfer rates with AOR. This work shows that electrocatalytic aldehyde oxidation can be achieved at a low applied electrochemical potential leading to an extremely energy efficient catalytic process.


Subject(s)
Aldehyde Oxidoreductases , Aldehydes , Aldehyde Oxidoreductases/chemistry , Aldehyde Oxidoreductases/metabolism , Tungsten , Methylene Blue , Kinetics , Oxidation-Reduction , Aldehyde Dehydrogenase
20.
Chemistry ; 29(9): e202203140, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36385513

ABSTRACT

Enzyme-catalyzed reaction cascades play an increasingly important role for the sustainable manufacture of diverse chemicals from renewable feedstocks. For instance, dehydratases from the ilvD/EDD superfamily have been embedded into a cascade to convert glucose via pyruvate to isobutanol, a platform chemical for the production of aviation fuels and other valuable materials. These dehydratases depend on the presence of both a Fe-S cluster and a divalent metal ion for their function. However, they also represent the rate-limiting step in the cascade. Here, catalytic parameters and the crystal structure of the dehydratase from Paralcaligenes ureilyticus (PuDHT, both in presence of Mg2+ and Mn2+ ) were investigated. Rate measurements demonstrate that the presence of stoichiometric concentrations Mn2+ promotes higher activity than Mg2+ , but at high concentrations the former inhibits the activity of PuDHT. Molecular dynamics simulations identify the position of a second binding site for the divalent metal ion. Only binding of Mn2+ (not Mg2+ ) to this site affects the ligand environment of the catalytically essential divalent metal binding site, thus providing insight into an inhibitory mechanism of Mn2+ at higher concentrations. Furthermore, in silico docking identified residues that play a role in determining substrate binding and selectivity. The combined data inform engineering approaches to design an optimal dehydratase for the cascade.


Subject(s)
Hydro-Lyases , Amino Acid Sequence , Hydro-Lyases/chemistry , Binding Sites , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL
...