Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 6(10): 9267-75, 2012 Oct 23.
Article in English | MEDLINE | ID: mdl-23013321

ABSTRACT

Self-assembled monolayers are the basis for molecular nanodevices, flexible surface functionalization, and dip-pen nanolithography. Yet self-assembled monolayers are typically created by a rather inefficient process involving thermally driven attachment reactions of precursor molecules to a metal surface, followed by a slow and defect-prone molecular reorganization. Here we demonstrate a nonthermal, electron-induced approach to the self-assembly of phenylacetylene molecules on gold that allows for a previously unachievable attachment of the molecules to the surface through the alkyne group. While thermal excitation can only desorb the parent molecule due to prohibitively high activation barriers for attachment reactions, localized injection of hot electrons or holes not only overcomes this barrier but also enables an unprecedented control over the size and shape of the self-assembly, defect structures, and the reverse process of molecular disassembly from a single molecule to a mesoscopic length scale. Electron-induced excitation may therefore enable new and highly controlled approaches to molecular self-assembly on a surface.


Subject(s)
Alkynes/chemistry , Crystallization/methods , Electroplating/methods , Gold/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
2.
ACS Nano ; 6(1): 566-72, 2012 Jan 24.
Article in English | MEDLINE | ID: mdl-22168531

ABSTRACT

Supramolecular self-assembly on well-defined surfaces provides access to a multitude of nanoscale architectures, including clusters of distinct symmetry and size. The driving forces underlying supramolecular structures generally involve both graphoepitaxy and weak directional nonconvalent interactions. Here we show that functionalizing a benzene molecule with an ethyne group introduces attractive interactions in a 2D geometry, which would otherwise be dominated by intermolecular repulsion. Furthermore, the attractive interactions enable supramolecular self-assembly, wherein a subtle balance between very weak CH/π bonding and molecule-surface interactions produces a well-defined "magic" dimension and chirality of supramolecular clusters. The nature of the process is corroborated by extensive scanning tunneling microscopy/spectroscopy (STM/S) measurements and ab initio calculations, which emphasize the cooperative, multicenter characters of the CH/π interaction. This work points out new possibilities for chemical functionalization of π-conjugated hydrocarbon molecules that may allow for the rational design of supramolecular clusters with a desired shape and size.


Subject(s)
Carbon/chemistry , Hydrogen/chemistry , Models, Chemical , Models, Molecular , Nanostructures/chemistry , Nanostructures/ultrastructure , Computer Simulation , Hydrogen Bonding , Macromolecular Substances/chemistry , Particle Size , Surface Properties
3.
ACS Nano ; 4(12): 7205-10, 2010 Dec 28.
Article in English | MEDLINE | ID: mdl-21082821

ABSTRACT

Unlike single-C(60)-based devices, molecular assemblies based on two or more appropriately connected C(60) molecules have the potential to exhibit negative differential resistance (NDR). In this work, we evaluate electron transport properties of molecular devices built from two C(60) molecules connected by an alkane chain, using a nonequilibrium Green function technique implemented within the framework of density functional theory. We find that electronic conduction in these systems is mediated by the lowest unoccupied molecular orbitals (LUMOs) of C(60), as in the case of a single-C(60)-based device. However, as the positions of the LUMOs are pinned to the chemical potentials of their respective electrodes, their relative alignment shifts with applied bias and leads to a NDR at a very low bias. Furthermore, the position and magnitude of the NDR can be tuned by chemical modification of the C(60) molecules. The role of the attached molecules is to shift the LUMO position and break the symmetry between the forward and reverse currents. The NDR feature can also be controlled by changing the length of the alkane linker. The flexibility and richness of C(60)-based molecular electronics components point to a potentially promising route for the design of molecular devices and chemical sensors.

4.
Acta Crystallogr A ; 66(Pt 5): 553-7, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20720320

ABSTRACT

Using first-principles calculations, the phase diagrams of polyvinylidene fluoride (PVDF) and its copolymers under an applied electric field are studied and phase transitions between their nonpolar alpha and polar beta phases are discussed. The results show that the degree of copolymerization is a crucial parameter controlling the structural phase transition. In particular, for tetrafluoroethylene (TeFE) concentration above 12%, PVDF-TeFE is stabilized in the beta phase, whereas the alpha phase is stable for lower concentrations. As larger electric fields are applied, domains with smaller concentrations (< or = 12%) undergo a transition from the alpha to the beta phase until a breakdown field of approximately 600 MV m(-1) is reached. These structural phase transitions can be exploited for efficient storage of electrical energy.

5.
Phys Rev Lett ; 88(7): 075506, 2002 Feb 18.
Article in English | MEDLINE | ID: mdl-11863911

ABSTRACT

Li-nanotube systems can substantially improve the capacity of Li-ion batteries by utilizing both nanotube exteriors and interiors. Our ab initio simulations show that while Li motion through the sidewalls is forbidden, Li ions can enter tubes through topological defects containing at least nine-sided rings, or through the ends of open-ended nanotubes. Once inside, their motion is not diffusion limited. These results suggest that "damaging" nanotube ropes by either chemical or mechanical means will yield superior material for electrochemical storage.

SELECTION OF CITATIONS
SEARCH DETAIL
...