Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
2.
Crit Care ; 28(1): 92, 2024 03 21.
Article in English | MEDLINE | ID: mdl-38515121

ABSTRACT

Acute kidney injury (AKI) often complicates sepsis and is associated with high morbidity and mortality. In recent years, several important clinical trials have improved our understanding of sepsis-associated AKI (SA-AKI) and impacted clinical care. Advances in sub-phenotyping of sepsis and AKI and clinical trial design offer unprecedented opportunities to fill gaps in knowledge and generate better evidence for improving the outcome of critically ill patients with SA-AKI. In this manuscript, we review the recent literature of clinical trials in sepsis with focus on studies that explore SA-AKI as a primary or secondary outcome. We discuss lessons learned and potential opportunities to improve the design of clinical trials and generate actionable evidence in future research. We specifically discuss the role of enrichment strategies to target populations that are most likely to derive benefit and the importance of patient-centered clinical trial endpoints and appropriate trial designs with the aim to provide guidance in designing future trials.


Subject(s)
Acute Kidney Injury , Sepsis , Humans , Acute Kidney Injury/therapy , Acute Kidney Injury/complications , Critical Illness/therapy , Sepsis/complications , Sepsis/therapy , Clinical Trials as Topic
3.
Intensive Care Med ; 50(1): 68-78, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38172296

ABSTRACT

PURPOSE: Ilofotase alfa is a human recombinant alkaline phosphatase with reno-protective effects that showed improved survival and reduced Major Adverse Kidney Events by 90 days (MAKE90) in sepsis-associated acute kidney injury (SA-AKI) patients. REVIVAL, was a phase-3 trial conducted to confirm its efficacy and safety. METHODS: In this international double-blinded randomized-controlled trial, SA-AKI patients were enrolled < 72 h on vasopressor and < 24 h of AKI. The primary endpoint was 28-day all-cause mortality. The main secondary endpoint was MAKE90, other secondary endpoints were (i) days alive and free of organ support through day 28, (ii) days alive and out of the intensive care unit (ICU) through day 28, and (iii) time to death through day 90. Prior to unblinding, the statistical analysis plan was amended, including an updated MAKE90 definition. RESULTS: Six hundred fifty patients were treated and analyzed for safety; and 649 for efficacy data (ilofotase alfa n = 330; placebo n = 319). The observed mortality rates in the ilofotase alfa and placebo groups were 27.9% and 27.9% at 28 days, and 33.9% and 34.8% at 90 days. The trial was stopped for futility on the primary endpoint. The observed proportion of patients with MAKE90A and MAKE90B were 56.7% and 37.4% in the ilofotase alfa group vs. 64.6% and 42.8% in the placebo group. Median [interquartile range (IQR)] days alive and free of organ support were 17 [0-24] and 14 [0-24], number of days alive and discharged from the ICU through day 28 were 15 [0-22] and 10 [0-22] in the ilofotase alfa and placebo groups, respectively. Adverse events were reported in 67.9% and 75% patients in the ilofotase and placebo group. CONCLUSION: Among critically ill patients with SA-AKI, ilofotase alfa did not improve day 28 survival. There may, however, be reduced MAKE90 events. No safety concerns were identified.


Subject(s)
Acute Kidney Injury , Alkaline Phosphatase , Sepsis , Humans , Acute Kidney Injury/drug therapy , Acute Kidney Injury/etiology , Alkaline Phosphatase/therapeutic use , Intensive Care Units , Sepsis/complications , Sepsis/drug therapy
4.
BMJ Open ; 13(4): e065613, 2023 04 03.
Article in English | MEDLINE | ID: mdl-37012016

ABSTRACT

INTRODUCTION: Sepsis, the leading cause of acute kidney injury (AKI), is associated with a high morbidity and mortality. Alkaline phosphatase (ALP) is an endogenous detoxifying enzyme. A recombinant human ALP compound, ilofotase alfa, showed no safety or tolerability concerns in a phase 2 trial. Renal function improvement over 28 days was significantly greater in the ilofotase alfa group. Moreover, a significant relative reduction in 28-day all-cause mortality of >40% was observed. A follow-up trial has been designed to confirm these findings. METHODS AND ANALYSIS: This is a phase 3, global, multi-centre, randomised, double-blind, placebo-controlled, sequential design trial in which patients are randomly assigned to either placebo or 1.6 mg/kg ilofotase alfa. Randomisation is stratified by baseline modified Sequential Organ Failure Assessment (mSOFA) score and trial site. The primary objective is to confirm the survival benefit with ilofotase alfa by demonstrating a reduction in 28-day all-cause mortality in patients with sepsis-associated AKI requiring vasopressors. A maximum of 1400 patients will be enrolled at ∼120 sites in Europe, North America, Japan, Australia and New Zealand. Up to four interim analyses will take place. Based on predefined decision rules, the trial may be stopped early for futility or for effectiveness. In addition, patients with COVID-19 disease and patients with 'moderate to severe' chronic kidney disease are analysed as 2 separate cohorts of 100 patients each. An independent Data Monitoring Committee evaluates safety data at prespecified intervals throughout the trial. ETHICS AND DISSEMINATION: The trial is approved by relevant institutional review boards/independent ethics committees and is conducted in accordance with the ethical principles of the Declaration of Helsinki, guidelines of Good Clinical Practice, Code of Federal Regulations and all other applicable regulations. Results of this study will determine the potential of ilofotase alfa to reduce mortality in critically ill patients with sepsis-associated AKI and will be published in a peer-reviewed scientific journal. TRIAL REGISTRATION NUMBER: EudraCT CT Number 2019-0046265-24. US IND Number 117 605 Pre-results. CLINICALTRIALS: gov number: NCT04411472.


Subject(s)
Acute Kidney Injury , COVID-19 , Sepsis , Humans , SARS-CoV-2 , Alkaline Phosphatase/therapeutic use , Sepsis/complications , Sepsis/drug therapy , Acute Kidney Injury/etiology , Treatment Outcome , Double-Blind Method , Randomized Controlled Trials as Topic , Multicenter Studies as Topic , Clinical Trials, Phase III as Topic
5.
Nephrol Dial Transplant ; 38(4): 834-844, 2023 03 31.
Article in English | MEDLINE | ID: mdl-35022767

ABSTRACT

Acute kidney injury (AKI) is a growing epidemic and is independently associated with increased risk of death, chronic kidney disease (CKD) and cardiovascular events. Randomized-controlled trials (RCTs) in this domain are notoriously challenging and many clinical studies in AKI have yielded inconclusive findings. Underlying this conundrum is the inherent heterogeneity of AKI in its etiology, presentation and course. AKI is best understood as a syndrome and identification of AKI subphenotypes is needed to elucidate the disease's myriad etiologies and to tailor effective prevention and treatment strategies. Conventional RCTs are logistically cumbersome and often feature highly selected patient populations that limit external generalizability and thus alternative trial designs should be considered when appropriate. In this narrative review of recent developments in AKI trials based on the Kidney Disease Clinical Trialists (KDCT) 2020 meeting, we discuss barriers to and strategies for improved design and implementation of clinical trials for AKI patients, including predictive and prognostic enrichment techniques, the use of pragmatic trials and adaptive trials.


Subject(s)
Acute Kidney Injury , Humans , Acute Kidney Injury/diagnosis , Acute Kidney Injury/etiology , Acute Kidney Injury/therapy , Prognosis
6.
J Am Soc Nephrol ; 33(8): 1459-1470, 2022 08.
Article in English | MEDLINE | ID: mdl-35831022

ABSTRACT

AKI is a complex clinical syndrome associated with an increased risk of morbidity and mortality, particularly in critically ill and perioperative patient populations. Most AKI clinical trials have been inconclusive, failing to detect clinically important treatment effects at predetermined statistical thresholds. Heterogeneity in the pathobiology, etiology, presentation, and clinical course of AKI remains a key challenge in successfully testing new approaches for AKI prevention and treatment. This article, derived from the "AKI" session of the "Kidney Disease Clinical Trialists" virtual workshop held in October 2021, reviews barriers to and strategies for improving the design and implementation of clinical trials in patients with, or at risk of, developing AKI. The novel approaches to trial design included in this review span adaptive trial designs that increase the knowledge gained from each trial participant; pragmatic trial designs that allow for the efficient enrollment of sufficiently large numbers of patients to detect small, but clinically significant, treatment effects; and platform trial designs that use one trial infrastructure to answer multiple clinical questions simultaneously. This review also covers novel approaches to clinical trial analysis, such as Bayesian analysis and assessing heterogeneity in the response to therapies among trial participants. We also propose a road map and actionable recommendations to facilitate the adoption of the reviewed approaches. We hope that the resulting road map will help guide future clinical trial planning, maximize learning from AKI trials, and reduce the risk of missing important signals of benefit (or harm) from trial interventions.


Subject(s)
Critical Illness , Bayes Theorem , Causality , Humans
7.
Respirology ; 20(8): 1172-81, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26437683

ABSTRACT

Cystic fibrosis (CF) in the Asian population is less frequently reported due to under-diagnosis and lack of centralized CF patient registries. Clinical studies on CF cases from Asia have documented a severe course of the disease. The spectrum of the cystic fibrosis transmembrane conductance regulator (CFTR) variants in this population is quite heterogeneous. In total, 166 variants have been reported on approximately 3700 Asian CF chromosomes. The frequency of F508del among Asians is low compared with Caucasians. Recent in vitro studies have shown promise of small molecule correction and potentiation of 45 different CFTR variants. Of these variants, 16 (including G551D and F508del) have also been observed among Asian CF individuals. We suggest undertaking molecular studies extensively to annotate CFTR variants that will help Asian CF individuals to benefit from the precision medicine gaining momentum in the Western countries.


Subject(s)
Asian People/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/epidemiology , Cystic Fibrosis/genetics , Asia/epidemiology , Cystic Fibrosis/drug therapy , Humans , Incidence , Mutation , Precision Medicine , Prevalence
SELECTION OF CITATIONS
SEARCH DETAIL
...