Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 8594, 2024 04 13.
Article in English | MEDLINE | ID: mdl-38615154

ABSTRACT

Mixed forests play a fundamental ecological role increasing biodiversity and providing ecosystem services; it has been suggested they have higher resilience and resistance against disturbances, particularly fire. Here, we compare tree mortality in post-fire mixed and pure stands in Spain, on 2,782 plots and 30,239 trees during the period 1986 to 2007. We show evidence that mixed stands can have higher post-fire mortality than pure stands, and specific mixtures of species with different fire-related strategies increase the stand's vulnerability to fire damage versus pure stands of either species, such is the case of Pinus halepensis-Pinus nigra mixtures. Mixtures of two species often had higher mortality than species growing in pure stands. Combinations of species with different fire-related strategies can both enhance or reduce forest resistance. The role and management of mixed forests should be reconsidered after these findings, in order to enhance forest resilience to fires.


Subject(s)
Ecosystem , Pinus , Forests , Trees , Biodiversity
2.
Microbiol Res ; 283: 127696, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518453

ABSTRACT

Boreal forests commonly suffer from nutrient deficiency due to restricted biological activity and decomposition. Biochar has been used as a promising strategy to improve soil quality, yet its impacts on forest soil microbes, particularly in cold environment, remains poorly understood. In this study, we investigated the effects of biochar, produced at different pyrolysis temperatures (500 °C and 650 °C) and applied at different amounts (0.5 kg·m-2 and 1.0 kg·m-2), on soil property, soil enzyme activity, and fungal community dynamics in a boreal forest over a span of two to four years. Our results showed that, four-year post-application of biochar produced at 650 °C and applied at 1.0 kg·m-2, significantly increased the relative abundance of Mortierellomycota and enhanced fungal species richness, α-diversity and evenness compared to the control (CK) (P < 0.05). Notably, the abundance of Phialocephala fortinii increased with the application of biochar produced at 500 °C and applied at 0.5 kg·m-2, exhibiting a positively correlation with the carbon cycling-related enzyme ß-cellobiosidase. Functionally, distinct fungal gene structures were formed between different biochar pyrolysis temperatures, and between application amounts in four-year post-biochar application (P < 0.05). Additionally, correlation analyses revealed the significance of the duration post-biochar application on the soil properties, soil extracellular enzymes, soil fungal dominant phyla, fungal community and gene structures (P < 0.01). The interaction between biochar pyrolysis temperature and application amount significantly influenced fungal α-diversity (P < 0.01). Overall, these findings provide theoretical insights and practical application for biochar as soil amendment in boreal forest ecosystems.


Subject(s)
Charcoal , Mycobiome , Resilience, Psychological , Soil/chemistry , Taiga , Ecosystem , Soil Microbiology
3.
Front Plant Sci ; 14: 1154232, 2023.
Article in English | MEDLINE | ID: mdl-37152132

ABSTRACT

Stem respiration (R s) plays a vital role in ecosystem carbon cycling. However, the measured efflux on the stem surface (E s) is not always in situ R s but only part of it. A previously proposed mass balance framework (MBF) attempted to explore the multiple partitioning pathways of R s, including sap-flow-transported and internal storage of R s, in addition to E s. This study proposed stem photosynthesis as an additional partitioning pathway to the MBF. Correspondingly, a double-chamber apparatus was designed and applied on newly sprouted Moso bamboo (Phyllostachys edulis) in leafless and leaved stages. R s of newly sprouted bamboo were twice as high in the leafless stage (7.41 ± 2.66 µmol m-2 s-1) than in the leaved stage (3.47 ± 2.43 µmol m-2 s-1). E s accounted for ~80% of R s, while sap flow may take away ~2% of R s in both leafless and leaved stages. Culm photosynthesis accounted for ~9% and 13% of R s, respectively. Carbon sequestration from culm photosynthesis accounted for approximately 2% of the aboveground bamboo biomass in the leafless stage. High culm photosynthesis but low sap flow during the leafless stage and vice versa during the leaved stage make bamboo an outstanding choice for exploring the MBF.

4.
Glob Chang Biol ; 29(14): 3924-3940, 2023 07.
Article in English | MEDLINE | ID: mdl-37165918

ABSTRACT

Forests are increasingly exposed to extreme global warming-induced climatic events. However, the immediate and carry-over effects of extreme events on forests are still poorly understood. Gross primary productivity (GPP) capacity is regarded as a good proxy of the ecosystem's functional stability, reflecting its physiological response to its surroundings. Using eddy covariance data from 34 forest sites in the Northern Hemisphere, we analyzed the immediate and carry-over effects of late-spring frost (LSF) and growing season drought on needle-leaf and broadleaf forests. Path analysis was applied to reveal the plausible reasons behind the varied responses of forests to extreme events. The results show that LSF had clear immediate effects on the GPP capacity of both needle-leaf and broadleaf forests. However, GPP capacity in needle-leaf forests was more sensitive to drought than in broadleaf forests. There was no interaction between LSF and drought in either needle-leaf or broadleaf forests. Drought effects were still visible when LSF and drought coexisted in needle-leaf forests. Path analysis further showed that the response of GPP capacity to drought differed between needle-leaf and broadleaf forests, mainly due to the difference in the sensitivity of canopy conductance. Moreover, LSF had a more severe and long-lasting carry-over effect on forests than drought. These results enrich our understanding of the mechanisms of forest response to extreme events across forest types.


Subject(s)
Droughts , Ecosystem , Seasons , Forests , Global Warming , Climate Change , Trees
5.
Environ Microbiome ; 17(1): 45, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36042528

ABSTRACT

Biochar is considered to be a possible means of carbon sequestration to alleviate climate change. However, the dynamics of the microbial community during wood decomposition after biochar application remain poorly understood. In this study, the wood-inhabiting bacterial community composition and its potential functions during a two-year decomposition period after the addition of different amounts of biochar (0.5 kg m-2 and 1.0 kg m-2), and at different biochar pyrolysis temperatures (500 °C and 650 °C), in a boreal Scots pine forest, were analyzed using Illumina NovaSeq sequencing combined with Functional Annotation of Prokaryotic Taxa (FAPROTAX). The results showed that the wood decomposition rates increased after biochar addition to the soil surface in the second year. Treatment with biochar produced at high temperatures increased the diversity of wood-inhabiting bacteria more than that produced at low temperatures (P < 0.05). The wood-inhabiting bacterial diversity and species richness decreased with decomposition time. The biochar treatments changed the wood-inhabiting bacterial community structure during the decomposition period. The pyrolysis temperature and the amount of applied biochar had no effect on the bacterial community structure but shifted the abundance of certain bacterial taxa. Similarly, biochar application shifted the wood-inhabiting bacterial community function in the first year, but not in the second year. The wood-inhabiting bacterial community and function were affected by soil pH, soil water content, and soil total nitrogen. The results provide useful information on biochar application for future forest management practices. Long-term monitoring is needed to better understand the effects of biochar application on nutrient cycling in boreal forests.

6.
Glob Chang Biol ; 28(20): 6021-6032, 2022 10.
Article in English | MEDLINE | ID: mdl-35901248

ABSTRACT

Climate warming has significantly altered the phenology of plants in recent decades. However, in contrast to the widely reported warming-induced extension of vegetative growing season, the response of fruit development period (FDP) from flowering to fruiting remains largely unexplored, particularly for woody plants. Analyzing >560,000 in situ observations of both flowering and fruiting dates for six temperate woody species across 2958 European phenological observations sites during 1980-2013, we found that in all species both flowering and fruiting phenology, that is, the FDP, advanced with climate warming. However, the advancing rates of the two events were not necessarily equal for any given species, resulting in divergent changes in the length of FDP among species with climate warming. During 1980-2013, not only the temperature during FDP but also the forcing requirement for fruit development increased, both affecting the length of FDP. The shortened FDP was mainly due to elevated temperature, thus accelerating the accumulation of forcing, whereas the prolonged FDP was primarily caused by the substantial increase of the forcing requirement of fruiting, which could be fulfilled only in a longer time and thus slowed down the advance of fruiting. This study provides large-scale empirical evidence of warming-induced advances of FDP but divergent changes in its length in temperate woody species. Our findings demonstrate the contrasting reproductive phenological strategies among temperate woody species under the pressure of warming climate, contrary to the lengthening of vegetative growing season, which is by and largely similar with different woody species.


Subject(s)
Climate , Fruit , Climate Change , Flowers , Plants , Reproduction , Seasons , Temperature
7.
FEMS Microbiol Ecol ; 98(8)2022 07 21.
Article in English | MEDLINE | ID: mdl-35749564

ABSTRACT

Microbial communities often possess enormous diversity, raising questions about whether this diversity drives ecosystem functioning, especially the influence of diversity on soil decomposition and respiration. Although functional redundancy is widely observed in soil microorganisms, evidence that species occupy distinct metabolic niches has also emerged. In this paper, we found that apart from the environmental variables, increases in microbial diversity, notably bacterial diversity, lead to an increase in soil C emissions. This was demonstrated using structural equation modelling (SEM), linking soil respiration with naturally differing levels of soil physio-chemical properties, vegetation coverage, and microbial diversity after fire disturbance. Our SEMs also revealed that models including bacterial diversity explained more variation of soil CO2 emissions (about 45%) than fungal diversity (about 38%). A possible explanation of this discrepancy is that fungi are more multifunctional than bacteria and, therefore, an increase in fungal diversity does not necessarily change soil respiration. Further analysis on functional gene structure suggested that bacterial and fungal diversities mainly explain the potential decomposition of recalcitrant C compare with that of labile C. Overall, by incorporating microbial diversity and the environmental variables, the predictive power of models on soil C emission was significantly improved, indicating microbial diversity is crucial for predicting ecosystem functions.


Subject(s)
Microbiota , Soil , Bacteria/genetics , Bacteria/metabolism , Biodiversity , Carbon/metabolism , Ecosystem , Forests , Fungi/genetics , Fungi/metabolism , Soil/chemistry , Soil Microbiology , Taiga
8.
Bioresour Technol ; 346: 126665, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34990857

ABSTRACT

The purpose of this study was to evaluate the bioremediation potential of the microalga Scenedesmus quadricauda in removing hexavalent chromium (Cr (VI)) from synthetic wastewater, under autotrophic and heterotrophic conditions and different inoculum concentrations. In both cultivation modes, the highest inoculum density of 0.8 g L-1 led to the highest Cr (VI) removal efficiency. In addition, Cr (VI) stress was more severe in 10 ppm compared to 5 ppm, while heavy metal effects were alleviated under heterotrophic conditions. Concurrently, Cr (VI) stress affected biomass quality, resulting in an increase in lipid and carbohydrate production and decreased proteins. Furthermore, under higher Cr (VI) concentration more saturated and monounsaturated fatty acids were produced, while monounsaturated fatty acids content was also greater under heterotrophic conditions. In total, the findings of this study highlight the advantages of heterotrophic cultivation of microalgae for concomitant industrial wastewater treatment and biofuel production.


Subject(s)
Microalgae , Scenedesmus , Biodegradation, Environmental , Biofuels , Biomass , Chromium/toxicity
9.
Glob Chang Biol ; 28(8): 2764-2778, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35060250

ABSTRACT

The past decades have witnessed an increase in dissolved organic carbon (DOC) concentrations in the catchments of the Northern Hemisphere. Increasing terrestrial productivity and changing hydrology may be reasons for the increases in DOC concentration. The aim of this study is to investigate the impacts of increased terrestrial productivity and changed hydrology following climate change on DOC concentrations. We tested and quantified the effects of gross primary production (GPP), ecosystem respiration (RE) and discharge on DOC concentrations in boreal catchments over 3 years. As catchment characteristics can regulate the extent of rising DOC concentrations caused by the regional or global environmental changes, we selected four catchments with different sizes (small, medium and large) and landscapes (forest, mire and forest-mire mixed). We applied multiple models: Wavelet coherence analysis detected the delay-effects of terrestrial productivity and discharge on aquatic DOC variations of boreal catchments; thereafter, the distributed-lag linear models quantified the contributions of each factor on DOC variations. Our results showed that the combined impacts of terrestrial productivity and discharge explained 62% of aquatic DOC variations on average across all sites, whereas discharge, gross primary production (GPP) and RE accounted for 26%, 22% and 3%, respectively. The impact of GPP and discharge on DOC changes was directly related to catchment size: GPP dominated DOC fluctuations in small catchments (<1 km2 ), whereas discharge controlled DOC variations in big catchments (>1 km2 ). The direction of the relation between GPP and discharge on DOC varied. Increasing RE always made a positive contribution to DOC concentration. This study reveals that climate change-induced terrestrial greening and shifting hydrology change the DOC export from terrestrial to aquatic ecosystems. The work improves our mechanistic understanding of surface water DOC regulation in boreal catchments and confirms the importance of DOC fluxes in regulating ecosystem C budgets.


Subject(s)
Ecosystem , Hydrology , Carbon/analysis , Dissolved Organic Matter , Rivers
10.
Sci Total Environ ; 806(Pt 4): 150919, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34653471

ABSTRACT

Boreal peatlands are major sources of nitrogen (N), phosphorus (P) and dissolved organic carbon (DOC) to downstream aquatic ecosystems, and forest harvesting generally further increases the loading of DOC and nutrients. Continuous cover forestry (CCF) is proposed to be an environmentally more sustainable management option for peatland forests than conventional even-aged clear-cutting. However, the impacts of CCF on water quality, the biodegradability of DOC and consequent CO2 emissions from inland waters are poorly known. We studied the concentrations of N, P and DOC, the quality of DOC, and the mineralization of DOC to CO2 in ground water and ditch water in clear-cut, partially harvested, i.e. CCF, and uncut drained forests in Finland. Groundwater total N, NH4-N and PO4-P concentrations were significantly lower in CCF and uncut forest than in the clear-cut forest. Groundwater DOC concentrations were often highest in the clear-cut forest, where the water table was closer to the soil surface. Ditch water DOC and N concentrations were lowest next to the clear-cut area. DOC aromaticity in ground water was higher in the uncut forest than in the clear-cut and CCF, whereas ditch water aromaticity did not differ between the treatments. The biodegradation of DOC was studied by incubating water (at 15 °C for 24 h) 1, 3, 7 and 21 days after sampling. The results indicated that the majority of the CO2 production took place during the first three days, and CO2 fluxes were considerably higher from the ditch water than from the groundwater. The CO2 emissions were lower in summer than in the other seasons. Ditch water and groundwater CO2 production were generally significantly higher in the clear-cut than in the uncut forest. The results suggest that CCF can decrease the nutrient concentrations as well as CO2 emissions from inland waters compared to conventional clear-cutting.


Subject(s)
Water Quality , Carbon/analysis , Ecosystem , Forests , Soil
11.
Sci Rep ; 11(1): 23531, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34876648

ABSTRACT

Monitoring the temporal and spatial variation of soil properties is helpful to understand the evolution of soil properties and adjust the management method in time. Soil fertility evaluation is an urgent need to understand soil fertility level and prevent soil degradation. Here, we conducted an intensive field investigation in Chinese hickory (Carya cathayensis Sarg.) plantation to clarify the spatial and temporal variation of soil properties and its influencing factors, and to evaluate the change of soil fertility. The results showed that the soil pH and soil organic carbon (SOC) significantly increased from 2008 to 2018, while available nitrogen (AN) significantly decreased from 2008 to 2018. The semi-variance revealed that except available phosphorus (AP), the spatial dependencies of soil properties increased from 2008 to 2018. An increasing south-north gradient was found for soil AN, AP, available potassium (AK) and SOC and a decreasing south-north gradient was found for soil pH. The average soil fertility in the whole area was increased from 2008 to 2018. Our findings demonstrated that the changes of the management measures were the reason for the change of soil properties from 2008 to 2018. Therefore, rational fertilization strategies and sod cultivation are recommended to maintain the long-term development of the producing forest.

12.
Front Microbiol ; 12: 653896, 2021.
Article in English | MEDLINE | ID: mdl-34122368

ABSTRACT

The boreal forest environment plays an important role in the global C cycle due to its high carbon storage capacity. However, relatively little is known about the forest fungal community at a regional scale in boreal forests. In the present study, we have re-analyzed the data from our previous studies and highlighted the core fungal community composition and potential functional groups in three forests dominated by Scots pine (Pinus sylvestris L.) in Finland, and identified the fungal generalists that appear across geographic locations despite differences in local conditions. The three forests represent subarctic, northern and southern boreal forest, and are all in an un-managed state without human interference or management. The subarctic and northern areas are subject to reindeer grazing. The results showed that the three locations formed distinct fungal community structures (P < 0.05). Compared to the two northern locations, the southern boreal forest harbored a greater abundance of Zygomycota, Lactarius, Mortierella Umbelopsis, and Tylospora, in which aspect there were no differences between the two northern forests. Cortinarius, Piloderma, and Suillus were the core fungal genera in the boreal Scots pine forest. Functionally, the southern boreal forest harbored a greater abundance of saprotroph, endophytes and fungal parasite-lichen, whereas a greater abundance of ectomycorrhizal fungi was observed in the northern boreal forests. Moreover, the pathotroph and wood saprotrophs were commonly present in these three regions. The three locations formed two distinct fungal community functional structures, by which the southern forest was clearly separated from the two northern forests, suggesting a distance-decay relationship via geographic location. This study provides useful information for better understanding the common fungal communities and functions in boreal forests in different geographical locations.

13.
Sci Rep ; 11(1): 7723, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33833331

ABSTRACT

Wildfires are a major disturbance to forest carbon (C) balance through both immediate combustion emissions and post-fire ecosystem dynamics. Here we used a process-based biogeochemistry model, the Terrestrial Ecosystem Model (TEM), to simulate C budget in Alaska and Canada during 1986-2016, as impacted by fire disturbances. We extracted the data of difference Normalized Burn Ratio (dNBR) for fires from Landsat TM/ETM imagery and estimated the proportion of vegetation and soil C combustion. We observed that the region was a C source of 2.74 Pg C during the 31-year period. The observed C loss, 57.1 Tg C year-1, was attributed to fire emissions, overwhelming the net ecosystem production (1.9 Tg C year-1) in the region. Our simulated direct emissions for Alaska and Canada are within the range of field measurements and other model estimates. As burn severity increased, combustion emission tended to switch from vegetation origin towards soil origin. When dNBR is below 300, fires increase soil temperature and decrease soil moisture and thus, enhance soil respiration. However, the post-fire soil respiration decreases for moderate or high burn severity. The proportion of post-fire soil emission in total emissions increased with burn severity. Net nitrogen mineralization gradually recovered after fire, enhancing net primary production. Net ecosystem production recovered fast under higher burn severities. The impact of fire disturbance on the C balance of northern ecosystems and the associated uncertainties can be better characterized with long-term, prior-, during- and post-disturbance data across the geospatial spectrum. Our findings suggest that the regional source of carbon to the atmosphere will persist if the observed forest wildfire occurrence and severity continues into the future.

14.
Data Brief ; 35: 106747, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33537378

ABSTRACT

This paper presents data for the assessment of a portable UV-Vis spectrophotometer's performance on predicting stream water DOC and Fe content. The dataset contains DOC and Fe concentrations by laboratory methods, in-situ and ex-situ spectral absorbances, monitoring environmental indexes such as water depth, temperature, turbidity and voltage. The records in Yli-Nuortti river (Cold station, Finland) took place during the hydrological year 2018-2019 and in Krycklan (C4 and C5, Sweden) during the hydrological years 2016-2019. The data analyses were conducted with 'pls' and 'caret' package in R. The correlation coefficient (R), root-mean-square deviation (RMSD), standard deviation (STD) and bias were used to check the performance of the models. This dataset can be combined with datasets from other regions around the world to build more universal models. For discussion and more information of the dataset creation, please refer to the full-length article "Assessment of a portable UV-Vis spectrophotometer's performance for stream water DOC and Fe content monitoring in remote areas" [1].

15.
Talanta ; 224: 121919, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33379120

ABSTRACT

Quantification of dissolved organic carbon (DOC) and iron (Fe) in surface waters is critical for understanding the water quality dynamics, brownification and carbon balance in the northern hemisphere. Especially in the remote areas, sampling and laboratory analysis of DOC and Fe content at a sufficient temporal frequency is difficult. Ultraviolet-visible (UV-Vis) spectrophotometry is a promising tool for water quality monitoring to increase the sampling frequency and applications in remote regions. The aim of this study was (1) to investigate the performance of an in-situ UV-Vis spectrophotometer for detecting spectral absorbances in comparison with a laboratory benchtop instrument; (2) to analyse the stability of DOC and Fe estimates from UV-Vis spectrophotometers among different rivers using multivariate methods; (3) to compare site-specific calibration of models to pooled models and investigate the extrapolation of DOC and Fe predictions from one catchment to another. This study indicates that absorbances that were measured by UV-Vis sensor explained 96% of the absorbance data from the laboratory benchtop instrument. Among the three tested multivariate methods, multiple stepwise regression (MSR) was the best model for both DOC and Fe predictions. Accurate and unbiased models for multiple watersheds for DOC were built successfully, and these models could be extrapolated from one watershed to another even without site-specific calibration for DOC. However, for Fe the combination of different datasets was not possible.

16.
Front Plant Sci ; 11: 579319, 2020.
Article in English | MEDLINE | ID: mdl-33240299

ABSTRACT

Age-related effects on whole-tree hydraulics are one of the key challenges to better predicting the production and growth of old-growth forests. Previous models have described the optimal state of stomatal behaviour, and field studies have implied on age/size-induced trends in tree ecophysiology related to hydraulics. On these bases, we built a Bayesian hierarchical model to link sap flow density and drivers of transpiration directly. The model included parameters with physiological meanings and accounted for variations in leaf-sapwood area ratio and the time lag between sap flow and transpiration. The model well-simulated the daily pattern of sap flow density and the variation between tree age groups. The results of parameterization show that (1) the usually higher stomatal conductance in young than old trees during mid-summer was mainly because the sap flow of young trees were more activated at low to medium light intensity, and (2) leaf-sapwood area ratio linearly decreased while time lag linearly increased with increasing tree height. Uncertainty partitioning and cross-validation, respectively, indicated a reliable and fairly robust parameter estimation. The model performance may be further improved by higher data quality and more process-based expressions of the internal dynamics of trees.

17.
Front Plant Sci ; 11: 550, 2020.
Article in English | MEDLINE | ID: mdl-32457783

ABSTRACT

As the most widely distributed giant running bamboo species in China, Moso bamboo (Phyllostachys edulis) can accomplish both development of newly sprouted culms and leaf renewal of odd-year-old culms within a few months in spring. The two phenological events in spring may together change water distribution among culms in different age categories within a stand, which may differ from our conventional understanding of the negative age effect on bamboo water use. Therefore, to explore the effect of spring shooting and leaf phenology on age-specific water use of Moso bamboo and potential water redistribution, we monitored water use of four culm age categories (newly sprouted, 1-, 2-, and 3-year-old; namely A0, A1, A2, A3) in spring from March to June 2018. For newly sprouting culms, the spring phenological period was classified into five stages (incubation, culm-elongation, branch-development, leafing, established). Over these phenological stages, age-specific accumulated sap flux density showed different patterns. The oldest culms, A3, were not influenced by leaf renewal and kept nearly constant and less water use than the other aged culms. However, A2, which did not renew their leaves, had the most water use at the two initial stages (incubation, culm-elongation) but consumed less water than A0 and A1 after the fourth stage (leafing). At the end of June, water use of the four age categories sorted in order of A0 > A1 > A2 > A3, which confirms the conventional thought and observations, i.e., a negative age effect. The results indicate that new leaf flushing may benefit younger culms (A1 and A0) more than older culms (A2 and A3), i.e., increasing their transpiration response to radiation and share of the stand transpiration. With the underground connected rhizome system, the bamboo stand as an integration seems to balance its water use among culms of different ages to support the water use of freshly sprouted culms during their developing period.

18.
Sci Total Environ ; 711: 134851, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32000328

ABSTRACT

One of the effects of climate change on boreal forest will be more frequent forest wildfires and permafrost thawing. These will increase the availability of soil organic matter (SOM) for microorganisms, change the ground vegetation composition and ultimately affect the emissions of biogenic volatile organic compounds (BVOCs), which impact atmospheric chemistry and climate. BVOC emissions from boreal forest floor have been little characterized in southern boreal region, and even less so in permafrost soil, which underlies most of the northern boreal region. Here, we report the long-term effects of wildfire on forest floor BVOC emission rates along a wildfire chronosequence in a Larix gmelinii forest in central Siberia. We determined forest floor BVOC emissions from forests exposed to wildfire 1, 23 and > 100 years ago. We studied how forest wildfires and the subsequent succession of ground vegetation, as well as changes in the availability of SOM along with the deepened and recovered active layer, influence BVOC emission rates. The forest floor acted as source of a large number of BVOCs in all forest age classes. Monoterpenes were the most abundant BVOC group in all age classes. The total BVOC emission rates measured from the 23- and >100-year-old areas were ca. 2.6 times higher than the emissions from the 1-year-old area. Lower emissions were related to a decrease in plant coverage and microbial decomposition of SOM after wildfire. Our results showed that forest wildfires play an important indirect role in regulating the amount and composition of BVOC emissions from post-fire originated boreal forest floor. This could have a substantial effect on BVOC emissions if the frequency of forest wildfires increases in the future as a result of climate warming.


Subject(s)
Permafrost , Wildfires , Siberia , Taiga , Volatile Organic Compounds
19.
Sci Total Environ ; 709: 135980, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-31887521

ABSTRACT

In response to ecological problems originating from long-term pure coniferous plantations, clear-cut, species mixing, and other forest regeneration practices have been proposed to develop into mixed conifer-broadleaved stand. However, the dynamic effects of these forest regeneration approaches on soil respiration have not been well investigated. In this study, we compared soil respiration for three continuous years from two completely different forest regeneration approaches in clear-cut areas with uncut as control in pure Chinese fir plantations in subtropical China. These two approaches were, I: ground vegetation cut and removal of slash in the first year followed by the second year's ground vegetation cut but retained on the site, and II: ground vegetation cut and slash burning in first year followed by second year's soil ploughing, replanting, ground vegetation cut but retained on the site. Soil respiration changed obviously as forest practices were applied in the both regeneration sites. Mean respiration rate for the first year was lower for the treatments of Approach I and Approach II than uncut control (-15.0% and -26.8%), indicating that soil respiration decreased with ground vegetation removal or slash burning after clear-cut. In contrast to the first year, mean respiration rate was higher for the treatments of Approach I and Approach II treatments than uncut control (+12.8% and +32.2% in the second year, 16.3% and 30.8% in the third year), indicating ground vegetation cut with retaining residuals or soil ploughing significantly increased soil respiration. These drastically changes were mainly due to the rapid growth of understory vegetation and new seedlings, the difference of species composition, the availability of respired organic matter and the intensity of soil disturbance induced by different specific forest practices of two regeneration approaches over time. In addition, the different species mixing and forest management practices enhance the uncertainty linked to the analyses of soil respiration. Our results suggest that high intensity forest regeneration approach has a higher soil CO2 emission and lower production of biomass. Forest regeneration approaches could decrease the temperature sensitivity of soil respiration. Our findings provide new insights into the effects of forest practices on soil CO2 flux following clear-cut.


Subject(s)
Cunninghamia , Biomass , China , Forests , Soil , Trees
20.
Sci Total Environ ; 718: 135291, 2020 May 20.
Article in English | MEDLINE | ID: mdl-31843307

ABSTRACT

Fire is the most important natural disturbance in boreal forests, and it has a major role regulating the carbon (C) budget of these systems. With the expected increase in fire frequency, the greenhouse gas (GHG) budget of boreal forest soils may change. In order to understand the long-term nature of the soil-atmosphere GHG exchange after fire, we established a fire chronosequence representing successional stages at 8, 19, 34, 65, 76 and 179 years following stand-replacing fires in hemiboreal Scots pine forests in Estonia. Changes in extracellular activity, litter decomposition, vegetation biomass, and soil physicochemical properties were assessed in relation to carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) emissions. Soil temperature was highest 8 years after fire, whereas soil moisture varied through the fire chronosequences without a consistent pattern. Litter decomposition and CO2 efflux were still lower 8 years after fire compared with pre-fire levels (179 years after fire). Both returned to pre-fire levels before vegetation re-established, and CO2 efflux was only strongly responsive to temperature from 19 years after fire onward. Recovery of CO2 efflux in the long term was associated with a moderate effect of fire on enzyme activity, the input of above- and below-ground litter carbon, and the re-establishment of vegetation. Soil acted as a CH4 sink and N2O source similarly in all successional stages. Compared with soil moisture and time after fire, soil temperature was the most important predictor for both GHGs. The re-establishment of overstorey and vegetation cover (mosses and lichens) might have caused an increase in CH4 and N2O effluxes in the studied areas, respectively.


Subject(s)
Wildfires , Carbon Dioxide , Estonia , Forests , Greenhouse Gases , Methane , Nitrous Oxide , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...