Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 13(4): e9965, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37038529

ABSTRACT

The coexistence of distinct alternative mating strategies (AMS) is often explained by mechanisms involving trade-offs between reproductive traits and lifetime fitness; yet their relative importance remains poorly understood. Here, we used an established individual-based, spatially explicit model to simulate bull trout (Salvelinus confluentus) in the Skagit River (Washington, USA) and investigated the influence of female mating preference, sneaker-specific mortality, and variation in age-at-maturity on AMS persistence using global sensitivity analyses and boosted regression trees. We assumed that two genetically fixed AMS coexisted within the population: sneaker males (characterized by younger age-at-maturity, greater AMS-specific mortality, and lower reproductive fitness) and territorial males. After 300 years, variation in relative sneaker success in the system was explained by sneaker males' reproductive fitness (72%) and, to a lesser extent, the length of their reproductive lifespan (21%) and their proportion in the initial population (8%). However, under a wide range of parameter values, our simulated scenarios predicted the extinction of territorial males or their persistence in small, declining populations. Although these results do not resolve the coexistence of AMS in salmonids, they reinforce the importance of mechanisms reducing sneaker's lifetime reproductive success in favoring AMS coexistence within salmonid populations but also limit the prediction that, without any other selective mechanisms at play, strong female preference for mating with territorial males and differences in reproductive lifespan allow the stable coexistence of distinct AMS.

2.
Mol Ecol ; 32(13): 3403-3418, 2023 07.
Article in English | MEDLINE | ID: mdl-37118974

ABSTRACT

Predicting how quickly populations expand their range and whether they will retain genetic diversity when they are introduced to new regions or track environmental conditions suited to their survival is an important applied and theoretical challenge. The literature suggests that long-distance dispersal, landscape heterogeneity and the evolution of dispersal influence populations' expansion rates and genetic diversity. We used individual-based spatially explicit simulations to examine these relationships for Tench (Tinca tinca), an invasive fish expanding its geographical range in eastern North America since the 1990s. Simulated populations varied greatly in expansion rates (1.1-28.6 patches year-1 ) and genetic diversity metrics, including changes in observed heterozygosity (-19 to +0.8%) and effective number of alleles (-0.32 to -0.01). Populations with greater dispersal distances expanded faster than those with smaller dispersal distances but exhibited considerable variation in expansion rate among local populations, implying less predictable expansions. However, they tended to retain genetic diversity as they expanded, suggesting more predictable evolutionary trajectories. In contrast, populations with smaller dispersal distances spread predictably more slowly but exhibited more variability among local populations in genetic diversity losses. Consistent with empirical data, populations spreading in a longer, narrower dispersal corridor lost more neutral genetic variation to the stochastic fixation of alleles. Given the unprecedented pace of anthropogenic environmental change and the increasing need to manage range-expanding populations, our results have conservation ramifications as they imply that the evolutionary trajectories of populations characterised by shorter dispersal distances spreading in narrower landscapes are more variable and, therefore, less predictable.


Subject(s)
Cyprinidae , Animals , Cyprinidae/genetics , Heterozygote , Geography , Ecosystem
3.
Evol Appl ; 16(1): 173-188, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36699124

ABSTRACT

Introduced and geographically expanding populations experience similar eco-evolutionary challenges, including founder events, genetic bottlenecks, and novel environments. Theory predicts that reduced genetic diversity resulting from such phenomena limits the success of introduced populations. Using 1900 SNPs obtained from restriction-site-associated DNA sequencing, we evaluated hypotheses related to the invasion history and connectivity of an invasive population of Tench (Tinca tinca), a Eurasian freshwater fish that has been expanding geographically in eastern North America for three decades. Consistent with the reported history of a single introduction event, our findings suggest that multiple introductions from distinct genetic sources are unlikely as Tench had a small effective population size (~114 [95% CI = 106-123] individuals), no strong population subdivision across time and space, and evidence of a recent genetic bottleneck. The large genetic neighbourhood size (220 km) and weak within-population genetic substructure suggested high connectivity across the invaded range, despite the relatively large area occupied. There was some evidence for a small decay in genetic diversity as the species expanded northward, but not southward, into new habitats. As eradicating the species within a ~112 km radius would be necessary to prevent recolonization, eradicating Tench is likely not feasible at watershed-and possibly local-scales. Management should instead focus on reducing abundance in priority conservation areas to mitigate adverse impacts. Our study indicates that introduced populations can thrive and exhibit relatively high levels of genetic diversity despite severe bottlenecks (<1.5% of the ancestral effective population size) and suggests that landscape heterogeneity and population demographics can generate variability in spatial patterns of genetic diversity within a single range expansion.

4.
PLoS One ; 16(11): e0259792, 2021.
Article in English | MEDLINE | ID: mdl-34780489

ABSTRACT

Local support is critical to the success and longevity of fishery management initiatives. Previous research suggests that how resource users perceive ecological changes, explain them, and cope with them, influences local support. The objectives of this study were two-fold. First, we collated local fishers' knowledge to characterize the long-term socio-ecological dynamics of the small-scale fishery of Sainte-Marie Island, in Madagascar. Second, we empirically assessed the individual- and site-level factors influencing support for fishery restrictions. Our results indicate that fishers observed a decline in fish abundance and catch sizes, especially in nearshore areas; many also perceived a reduction in fish sizes and the local disappearance of species. To maintain their catches, most fishers adapted by fishing harder and further offshore. Accordingly, fishers identified increased fishing effort (number of fishers and gear evolution) as the main cause of fishery changes. Collectively, our results highlight that the transition from a subsistence to commercial fishery, and resulting changes in the relationship between people and the fisheries, was an underlying driver of fishery changes. Additionally, we found that gender, membership to local associations, coping mechanisms, and perceptions of ecological health, were all interlinked and significantly associated with conservation-oriented attitudes. Conservation-oriented attitudes, however, were not associated with fishers' willingness to decrease fishing. In the short-term, area-based restrictions could contribute to building support for conservation. In the long-term, addressing the underlying causes of the decline will necessitate collaborations among the various groups involved to progressively build livelihood flexibility. Collectively, our study provides additional insights on the individual- and site-level factors influencing support for fishery restrictions. It also highlights the importance of dialoguing with fishers to ensure that fishery management plans are adapted to the local context.


Subject(s)
Fisheries , Adaptation, Psychological , Animals , Madagascar , Problem Solving
5.
Evol Appl ; 12(7): 1305-1317, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31417616

ABSTRACT

Understanding the extent to which captivity generates maladaptation in wild species can inform species recovery programs and elucidate wild population responses to novel environmental change. Although rarely quantified, effective population size (N e ) and genetic diversity should influence the magnitude of plastic and genetic changes manifested in captivity that reduce wild fitness. Sexually dimorphic traits might also mediate consequences of captivity. To evaluate these relationships, we generated >600 full- and half-sibling families from nine wild brook trout populations, reared them for one generation under common, captive environmental conditions and contrasted several fitness-related traits in wild versus captive lines. We found substantial variation in lifetime success (lifetime survival and reproductive success) and life history traits among wild populations after just one captive generation (fourteen- and threefold ranges across populations, respectively). Populations with lower heterozygosity showed lower captive lifetime success, suggesting that captivity generates maladaptation within one generation. Greater male-biased mortality in captivity occurred in populations having disproportionately higher growth rates in males than females. Wild population N e and allelic diversity had little or no influence on captive trait expression and lifetime success. Our results have four conservation implications: (i) Trait values and lifetime success were highly variable across populations following one generation of captivity. (ii) Maladaptation induced by captive breeding might be particularly intense for the very populations practitioners are most interested in conserving, such as those with low heterozygosity. (iii) Maladaptive sex differences in captivity might be associated with population-dependent growth costs of reproduction. (iv) Heterozygosity can be a good indicator of short-term, intraspecific responses to novel environmental change.

6.
Sci Data ; 6(1): 14, 2019 04 03.
Article in English | MEDLINE | ID: mdl-30944329

ABSTRACT

Population genetic data from nuclear DNA has yet to be synthesized to allow broad scale comparisons of intraspecific diversity versus species diversity. The MacroPopGen database collates and geo-references vertebrate population genetic data across the Americas from 1,308 nuclear microsatellite DNA studies, 897 species, and 9,090 genetically distinct populations where genetic differentiation (FST) was measured. Caribbean populations were particularly distinguished from North, Central, and South American populations, in having higher differentiation (FST = 0.12 vs. 0.07-0.09) and lower mean numbers of alleles (MNA = 4.11 vs. 4.84-5.54). While mammalian populations had lower MNA (4.86) than anadromous fish, reptiles, amphibians, freshwater fish, and birds (5.34-7.81), mean heterozygosity was largely similar across groups (0.57-0.63). Mean FST was consistently lowest in anadromous fishes (0.06) and birds (0.05) relative to all other groups (0.09-0.11). Significant differences in Family/Genera variance among continental regions or taxonomic groups were also observed. MacroPopGen can be used in many future applications including latitudinal analyses, spatial analyses (e.g. central-margin), taxonomic comparisons, regional assessments of anthropogenic impacts on biodiversity, and conservation of wild populations.


Subject(s)
Databases, Genetic , Microsatellite Repeats , Vertebrates/genetics , Animals , Biodiversity , Caribbean Region , Central America , North America , South America
7.
Evol Appl ; 10(9): 935-945, 2017 10.
Article in English | MEDLINE | ID: mdl-29151884

ABSTRACT

Technological and methodological advances have facilitated the use of genetic data to infer census population size (Nc) in natural populations, particularly where traditional mark-and-recapture is challenging. The effective number of breeders (Nb) describes how many adults effectively contribute to a cohort and is often correlated with Nc. Predicting Nc from Nb or vice versa in species with overlapping generations has important implications for conservation by permitting (i) estimation of the more difficult to quantify variable and (ii) inferences of Nb/Nc relationships in related species lacking data. We quantitatively synthesized Nb/Nc relationships in three salmonid fishes where sufficient data have recently accumulated. Mixed-effects models were analysed in which each variable was included as a dependent variable or predictor term (Nb from Nc and vice versa). Species-dependent Nb/Nc slope estimates were significantly positive in two of three species. Variation in species slopes was likely due to varying life histories and reinforce caution when inferring Nb/Nc from taxonomically related species. Models provided maximum probable estimates for Nb and Nc for two species. However, study, population and year effects explained substantial amounts of variation (39%-57%). Consequently, prediction intervals were wide and included or were close to zero for all population sizes and species; model predictive utility was limited. Cost-benefit trade-offs when estimating Nb and/or Nc were also discussed using a real-world system example. Our findings based on salmonids suggest that no short cuts currently exist when estimating population size and researchers should focus on quantifying the variable of interest or be aware of caveats when inferring the desired variable because of cost or logistics. We caution that the salmonid species examined share life-history traits that may obscure relationships between Nb and Nc. Sufficient data on other taxa were unavailable; additional research examining Nb/Nc relationships in species with potentially relevant life-history trait differences (e.g., differing survival curves) is needed.

SELECTION OF CITATIONS
SEARCH DETAIL
...