Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
2.
Stroke ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776169

ABSTRACT

BACKGROUND: Extreme temperatures contribute significantly to global mortality. While previous studies on temperature and stroke-specific outcomes presented conflicting results, these studies were predominantly limited to single-city or single-country analyses. Their findings are difficult to synthesize due to variations in methodologies and exposure definitions. METHODS: Within the Multi-Country Multi-City Network, we built a new mortality database for ischemic and hemorrhagic stroke. Applying a unified analysis protocol, we conducted a multinational case-crossover study on the relationship between extreme temperatures and stroke. In the first stage, we fitted a conditional quasi-Poisson regression for daily mortality counts with distributed lag nonlinear models for temperature exposure separately for each city. In the second stage, the cumulative risk from each city was pooled using mixed-effect meta-analyses, accounting for clustering of cities with similar features. We compared temperature-stroke associations across country-level gross domestic product per capita. We computed excess deaths in each city that are attributable to the 2.5% hottest and coldest of days based on each city's temperature distribution. RESULTS: We collected data for a total of 3 443 969 ischemic strokes and 2 454 267 hemorrhagic stroke deaths from 522 cities in 25 countries. For every 1000 ischemic stroke deaths, we found that extreme cold and hot days contributed 9.1 (95% empirical CI, 8.6-9.4) and 2.2 (95% empirical CI, 1.9-2.4) excess deaths, respectively. For every 1000 hemorrhagic stroke deaths, extreme cold and hot days contributed 11.2 (95% empirical CI, 10.9-11.4) and 0.7 (95% empirical CI, 0.5-0.8) excess deaths, respectively. We found that countries with low gross domestic product per capita were at higher risk of heat-related hemorrhagic stroke mortality than countries with high gross domestic product per capita (P=0.02). CONCLUSIONS: Both extreme cold and hot temperatures are associated with an increased risk of dying from ischemic and hemorrhagic strokes. As climate change continues to exacerbate these extreme temperatures, interventional strategies are needed to mitigate impacts on stroke mortality, particularly in low-income countries.

3.
Curr Environ Health Rep ; 10(3): 337-352, 2023 09.
Article in English | MEDLINE | ID: mdl-37491689

ABSTRACT

PURPOSE OF REVIEW: Organosulfur compounds are intentionally added to natural gas as malodorants with the intent of short-term nasal inhalation to aid in leak detection. Regulatory exposure limits have not been established for all commonly used natural gas odorants, and recent community-level exposure events and growing evidence of indoor natural gas leakage have raised concerns associated with natural gas odorant exposures. We conducted a scoping review of peer-reviewed scientific publications on human exposures and animal toxicological studies of natural gas odorants to assess toxicological profiles, exposure potential, health effects and regulatory guidelines associated with commonly used natural gas odorants. RECENT FINDINGS: We identified only 22 studies which met inclusion criteria for full review. Overall, there is limited evidence of both transient nonspecific health symptoms and clinically diagnosed causative neurotoxic effects associated with prolonged odorant exposures. Across seven community-level exposure events and two occupational case reports, consistent symptom patterns included: headache, ocular irritation, nose and throat irritation, respiratory complaints such as shortness of breath and asthma attacks, and skin irritation and rash. Of these, respiratory inflammation and asthma exacerbations are the most debilitating, whereas the high prevalence of ocular and dermatologic symptoms suggest a non-inhalation route of exposure. The limited evidence available raises the possibility that organosulfur odorants may pose health risks at exposures much lower than presently understood, though additional dose-response studies are needed to disentangle specific toxicologic effects from nonspecific responses to noxious organosulfur odors. Numerous recommendations are provided including more transparent and prescriptive natural gas odorant use practices.


Subject(s)
Asthma , Odorants , Animals , Humans , Natural Gas
4.
Occup Environ Med ; 80(6): 347-352, 2023 06.
Article in English | MEDLINE | ID: mdl-37068948

ABSTRACT

BACKGROUND: Hot, desert Gulf countries are host to millions of migrant workers doing outdoor jobs such as construction and hospitality. The Gulf countries apply a summertime ban on midday work to protect workers from extreme heat, although without clear evidence of effectiveness. We assessed the risk of occupational injuries associated with extreme hot temperatures during the summertime ban on midday work in Kuwait. METHODS: We collected daily occupational injuries in the summer months that are reported to the Ministry of Health's Occupational Health Department for 5 years from 2015 to 2019. We fitted generalised additive models with a quasi-Poisson distribution in a time series design. A 7-day moving average of daily temperature was modelled with penalised splines adjusted for relative humidity, time trend and day of the week. RESULTS: During the summertime ban, the daily average temperature was 39.4°C (±1.8°C). There were 7.2, 7.6 and 9.4 reported injuries per day in the summer months of June, July and August, respectively. Compared with the 10th percentile of summer temperatures in Kuwait (37.0°C), the average day with a temperature of 39.4°C increased the relative risk of injury to 1.44 (95% CI 1.34 to 1.53). Similarly, temperatures of 40°C and 41°C were associated with relative risks of 1.48 (95% CI 1.39 to 1.59) and 1.44 (95% CI 1.27 to 1.63), respectively. At the 90th percentile (42°C), the risks levelled off (relative risk 1.21; 95% CI 0.93 to 1.57). CONCLUSION: We found substantial increases in the risk of occupational injury from extremely hot temperatures despite the ban on midday work policy in Kuwait. 'Calendar-based' regulations may be inadequate to provide occupational heat protections, especially for migrant workers.


Subject(s)
Extreme Heat , Occupational Injuries , Humans , Hot Temperature , Occupational Injuries/epidemiology , Occupational Injuries/etiology , Kuwait/epidemiology , Temperature
5.
Circulation ; 147(1): 35-46, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36503273

ABSTRACT

BACKGROUND: Cardiovascular disease is the leading cause of death worldwide. Existing studies on the association between temperatures and cardiovascular deaths have been limited in geographic zones and have generally considered associations with total cardiovascular deaths rather than cause-specific cardiovascular deaths. METHODS: We used unified data collection protocols within the Multi-Country Multi-City Collaborative Network to assemble a database of daily counts of specific cardiovascular causes of death from 567 cities in 27 countries across 5 continents in overlapping periods ranging from 1979 to 2019. City-specific daily ambient temperatures were obtained from weather stations and climate reanalysis models. To investigate cardiovascular mortality associations with extreme hot and cold temperatures, we fit case-crossover models in each city and then used a mixed-effects meta-analytic framework to pool individual city estimates. Extreme temperature percentiles were compared with the minimum mortality temperature in each location. Excess deaths were calculated for a range of extreme temperature days. RESULTS: The analyses included deaths from any cardiovascular cause (32 154 935), ischemic heart disease (11 745 880), stroke (9 351 312), heart failure (3 673 723), and arrhythmia (670 859). At extreme temperature percentiles, heat (99th percentile) and cold (1st percentile) were associated with higher risk of dying from any cardiovascular cause, ischemic heart disease, stroke, and heart failure as compared to the minimum mortality temperature, which is the temperature associated with least mortality. Across a range of extreme temperatures, hot days (above 97.5th percentile) and cold days (below 2.5th percentile) accounted for 2.2 (95% empirical CI [eCI], 2.1-2.3) and 9.1 (95% eCI, 8.9-9.2) excess deaths for every 1000 cardiovascular deaths, respectively. Heart failure was associated with the highest excess deaths proportion from extreme hot and cold days with 2.6 (95% eCI, 2.4-2.8) and 12.8 (95% eCI, 12.2-13.1) for every 1000 heart failure deaths, respectively. CONCLUSIONS: Across a large, multinational sample, exposure to extreme hot and cold temperatures was associated with a greater risk of mortality from multiple common cardiovascular conditions. The intersections between extreme temperatures and cardiovascular health need to be thoroughly characterized in the present day-and especially under a changing climate.


Subject(s)
Cardiovascular Diseases , Heart Failure , Myocardial Ischemia , Stroke , Humans , Hot Temperature , Temperature , Cause of Death , Cold Temperature , Death , Mortality
9.
Sci Adv ; 8(5): eabl4183, 2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35119921

ABSTRACT

The lives lost and economic costs of viral zoonotic pandemics have steadily increased over the past century. Prominent policymakers have promoted plans that argue the best ways to address future pandemic catastrophes should entail, "detecting and containing emerging zoonotic threats." In other words, we should take actions only after humans get sick. We sharply disagree. Humans have extensive contact with wildlife known to harbor vast numbers of viruses, many of which have not yet spilled into humans. We compute the annualized damages from emerging viral zoonoses. We explore three practical actions to minimize the impact of future pandemics: better surveillance of pathogen spillover and development of global databases of virus genomics and serology, better management of wildlife trade, and substantial reduction of deforestation. We find that these primary pandemic prevention actions cost less than 1/20th the value of lives lost each year to emerging viral zoonoses and have substantial cobenefits.

10.
Environ Health Perspect ; 130(1): 17001, 2022 01.
Article in English | MEDLINE | ID: mdl-35044241

ABSTRACT

BACKGROUND: Extreme heat exposures are increasing with climate change. Health effects are well documented in adults, but the risks to children are not well characterized. OBJECTIVES: We estimated the association between warm season (May to September) temperatures and cause-specific emergency department (ED) visits among U.S. children and adolescents. METHODS: This multicenter time-series study leveraged administrative data on 3.8 million ED visits by children and adolescents ≤18 years of age to the EDs of 47 U.S. children's hospitals from May to September from 2016 to 2018. Daily maximum ambient temperature was estimated in the county of the hospital using a spatiotemporal model. We used distributed-lag nonlinear models with a quasi-Poisson distribution to estimate the association between daily maximum temperature and the relative risk (RR) of ED visits, adjusting for temporal trends. We then used a random-effects meta-analytic model to estimate the overall cumulative association. RESULTS: Extreme heat was associated with an RR of all-cause ED visits of 1.17 (95% CI: 1.12, 1.21) relative to hospital-specific minimum morbidity temperature. Associations were more pronounced for ED visits due to heat-related illness including dehydration and electrolyte disorders (RR= 1.83; 95% CI: 1.31, 2.57), bacterial enteritis (1.35; 95% CI: 1.02, 1.79), and otitis media and externa (1.30; 95% CI: 1.11, 1.52). Taken together, temperatures above the minimum morbidity temperature accounted for an estimated 11.8% [95% empirical 95% confidence interval (eCI): 9.9%, 13.3%] of warm season ED visits for any cause and 31.0% (95% eCI: 17.9%, 36.5%) of ED visits for heat-related illnesses. CONCLUSION: During the warm season, days with higher temperatures were associated with higher rates of visits to children's hospital EDs. Higher ambient temperatures may contribute to a significant proportion of ED visits among U.S. children and adolescents. https://doi.org/10.1289/EHP8083.


Subject(s)
Emergency Service, Hospital , Extreme Heat , Heat Stress Disorders , Adolescent , Child , Emergency Service, Hospital/statistics & numerical data , Heat Stress Disorders/epidemiology , Hospitals , Hot Temperature , Humans , Seasons , United States
11.
Environ Pollut ; 282: 117016, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-33848912

ABSTRACT

BACKGROUND: Kuwait and the Gulf region have a desert, hyper-arid and hot climate that makes outdoor air sampling challenging. The region is also affected by intense dust storms. Monitoring challenges from the harsh climate have limited data needed to inform appropriate regulatory actions to address air pollution in the region. OBJECTIVES: To compare gravimetric measurements with existing networks that rely on beta-attenuation measurements in a desert climate; determine the annual levels of PM2.5 and PM10 over a two-year period in Kuwait; assess compliance with air quality standards; and identify and quantify PM2.5 sources. METHODS: We custom-designed particle samplers that can withstand large quantities of dust without their inlet becoming overloaded. The samplers were placed in two populated residential locations, one in Kuwait City and another near industrial and petrochemical facilities in Ali Sabah Al-Salem (ASAS) to collect PM2.5 and PM10 samples for mass and elemental analysis. We used positive matrix factorization to identify PM2.5 sources and apportion their contributions. RESULTS: We collected 2339 samples during the period October 2017 through October 2019. The beta-attenuation method in measuring PM2.5 consistently exceeded gravimetric measurements, especially during dust events. The annual levels for PM2.5 in Kuwait City and ASAS were 41.6 ± 29.0 and 47.5 ± 27.6 µg/m3, respectively. Annual PM2.5 levels in Kuwait were nearly four times higher than the U.S. National Ambient Air Quality Standard. Regional pollution was a major contributor to PM2.5 levels in both locations accounting for 44% in Kuwait City and 46% in ASAS. Dust storms and re-suspended road dust were the second and third largest contributors to PM2.5, respectively. CONCLUSIONS: The premise that frequent and extreme dust storms make air quality regulation futile is dubious. In this comprehensive particulate pollution analysis, we show that the sizeable regional anthropogenic particulate sources warrant national and regional mitigation strategies to ensure compliance with air quality standards.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Cities , Dust/analysis , Environmental Monitoring , Kuwait , Malaysia , Particulate Matter/analysis
12.
Med ; 2(4): 361-365, 2021 04 09.
Article in English | MEDLINE | ID: mdl-35590158

ABSTRACT

The growing mass of colorless and odorless greenhouse gases high in earth's atmosphere may be about as far away from a hospital bedside or clinic exam room as any concern imaginable. Despite this, the challenges of climate change have progressively moved nearer to the work of all those in health care. From sinister storms, fires, and heat waves that imperil our patients, facilities, and supplies to the outsized contribution of medical care to air pollution, the motivations and needs for a medical response to climate change are many and clear.


Subject(s)
Air Pollution , Greenhouse Gases , Atmosphere , Climate Change , Humans
13.
Environ Health ; 18(1): 58, 2019 07 08.
Article in English | MEDLINE | ID: mdl-31280723

ABSTRACT

BACKGROUND: Spatially accurate population data are critical for determining health impacts from many known risk factors. However, the utility of the increasing spatial resolution of disease mapping and environmental exposures is limited by the lack of receptor population data at similar sub-census block spatial scales. METHODS: Here we apply an innovative method (Population Allocation by Occupied Domicile Estimation - ABODE) to disaggregate U.S. Census populations by allocating an average person per household to geospatially-identified residential housing units (RHU). We considered two possible sources of RHU location data: address point locations and building footprint centroids. We compared the performance of ABODE with the common proportional population allocation (PPA) method for estimating the nighttime residential populations within 200 m radii and setback areas (100 - 300 ft) around active underground natural gas storage (UGS) wells (n = 9834) in six U.S. states. RESULTS: Address location data generally outperformed building footprint data in predicting total counts of census residential housing units, with correlations ranging from 0.67 to 0.81 at the census block level. Using residentially-sited addresses only, ABODE estimated upwards of 20,000 physical households with between 48,126 and 53,250 people living within 200 m of active UGS wells - likely encompassing the size of a proposed UGS Wellhead Safety Zone. Across the 9834 active wells assessed, ABODE estimated between 5074 and 10,198 more people living in these areas compare to PPA, and the difference was significant at the individual well level (p = < 0.0001). By either population estimation method, OH exhibits a substantial degree of hyperlocal land use conflict between populations and UGS wells - more so than other states assessed. In some rare cases, population estimates differed by more than 100 people for the small 200 m2 well-areas. ABODE's explicit accounting of physical households confirmed over 50% of PPA predictions as false positives indicated by non-zero predictions in areas absent physical RHUs. CONCLUSIONS: Compared to PPA - in allocating identical population data at sub-census block spatial scales -ABODE provides a more precise population at risk (PAR) estimate with higher confidence estimates of populations at greatest risk. 65% of UGS wells occupy residential urban and suburban areas indicating the unique land use conflicts presented by UGS systems that likely continue to experience population encroachment. Overall, ABODE confirms tens of thousands of homes and residents are likely located within the proposed UGS Wellhead Safety Zone - and in some cases within state's oil and gas well surface setback distances - of active UGS wells.


Subject(s)
Environmental Exposure , Environmental Monitoring/methods , Housing/statistics & numerical data , Natural Gas , Oil and Gas Fields , United States
14.
Pediatrics ; 2019 May 20.
Article in English | MEDLINE | ID: mdl-31110165

ABSTRACT

American children eat relatively little fish and shellfish in comparison with other sources of animal protein, despite the health benefits that eating fish and shellfish may confer. At the same time, fish and shellfish may be sources of toxicants. This report serves to inform pediatricians about available research that elucidates health risks and benefits associated with fish and shellfish consumption in childhood as well as the sustainability of fish and shellfish harvests.

15.
Annu Rev Public Health ; 35: 153-67, 2014.
Article in English | MEDLINE | ID: mdl-24387087

ABSTRACT

In the wake of a species extinction event unprecedented in human history, how the variety, distribution, and abundance of life on earth may influence health has gained credence as a worthy subject for research and study at schools of public health and for consideration among policy makers. This article reviews a few of the principal ways in which health depends on biodiversity, including the discovery of new medicines, biomedical research, the provision of food, and the distribution and spread of infections. It also examines how changes in biological diversity underlie much of the global burden of disease and how a more thorough understanding of life on earth and its relationships has the potential to greatly alleviate and prevent human suffering.


Subject(s)
Biodiversity , Communicable Diseases/epidemiology , Health Status , Public Health , Biomedical Research , Climate Change , Communicable Diseases/microbiology , Drug Discovery , Food Supply , Humans , Microbiota
16.
Chest ; 144(5): 1732, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24189871
17.
Chest ; 143(5): 1455-1459, 2013 May.
Article in English | MEDLINE | ID: mdl-23648909

ABSTRACT

Climate change is a health threat no less consequential than cigarette smoking. Increased concentrations of greenhouse gases, and especially CO2, in the earth's atmosphere have already warmed the planet substantially, causing more severe and prolonged heat waves, temperature variability, air pollution, forest fires, droughts, and floods, all of which put respiratory health at risk. These changes in climate and air quality substantially increase respiratory morbidity and mortality for patients with common chronic lung diseases such as asthma and COPD and other serious lung diseases. Physicians have a vital role in addressing climate change, just as they did with tobacco, by communicating how climate change is a serious, but remediable, hazard to their patients.


Subject(s)
Climate Change , Global Warming , Lung/physiopathology , Air Pollution/adverse effects , Asthma/mortality , Humans , Pulmonary Disease, Chronic Obstructive/mortality , Survival Rate
18.
Curr Opin Pediatr ; 23(2): 221-6, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21412082

ABSTRACT

PURPOSE OF REVIEW: To present the latest data that demonstrate how climate change affects children's health and to identify the principal ways in which climate change puts children's health at risk. RECENT FINDINGS: Data continue to emerge that further implicate climate change as contributing to health burdens in children. Climate models have become even more sophisticated and consistently forecast that greenhouse gas emissions will lead to higher mean temperatures that promote more intense storms and droughts, both of which have profound implications for child health. Recent climate models shed light upon the spread of vector-borne disease, including Lyme disease in North America and malaria in Africa. Modeling studies have found that conditions conducive to forest fires, which generate harmful air pollutants and damage agriculture, are likely to become more prevalent in this century due to the effects of greenhouse gases added to earth's atmosphere. SUMMARY: Through many pathways, and in particular via placing additional stress upon the availability of food, clean air, and clean water and by potentially expanding the burden of disease from certain vector-borne diseases, climate change represents a major threat to child health. Pediatricians have already seen and will increasingly see the adverse health effects of climate change in their practices. Because of this, and many other reasons, pediatricians have a unique capacity to help resolve the climate change problem.


Subject(s)
Child Welfare , Climate Change , Air Pollution/adverse effects , Animals , Child , Communicable Diseases/epidemiology , Communicable Diseases/transmission , Disease Vectors , Dysentery/etiology , Food Supply , Humans , Population Dynamics , Respiratory Tract Diseases/etiology , Water Cycle , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...