Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Reprod Biol Endocrinol ; 22(1): 52, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711160

ABSTRACT

BACKGROUND: Elevated FSH often occurs in women of advanced maternal age (AMA, age ≥ 35) and in infertility patients undergoing controlled ovarian stimulation (COS). There is controversy on whether high endogenous FSH contributes to infertility and whether high exogenous FSH adversely impacts patient pregnancy rates. METHODS: The senescence-accelerated mouse-prone-8 (SAMP8) model of female reproductive aging was employed to assess the separate impacts of age and high FSH activity on the percentages (%) of viable and mature ovulated oocytes recovered after gonadotropin treatment. Young and midlife mice were treated with the FSH analog equine chorionic gonadotropin (eCG) to model both endogenous FSH elevation and exogenous FSH elevation. Previously we showed the activin inhibitor ActRIIB:Fc increases oocyte quality by preventing chromosome and spindle misalignments. Therefore, ActRIIB:Fc treatment was performed in an effort to increase % oocyte viability and % oocyte maturation. RESULTS: The high FSH activity of eCG is ootoxic to ovulatory oocytes, with greater decreases in % viable oocytes in midlife than young mice. High FSH activity of eCG potently inhibits oocyte maturation, decreasing the % of mature oocytes to similar degrees in young and midlife mice. ActRIIB:Fc treatment does not prevent eCG ootoxicity, but it restores most oocyte maturation impeded by eCG. CONCLUSIONS: FSH ootoxicity to ovulatory oocytes and FSH maturation inhibition pose a paradox given the well-known pro-growth and pro-maturation activities of FSH in the earlier stages of oocyte growth. We propose the FOOT Hypothesis ("FSH OoToxicity Hypothesis), that FSH ootoxicity to ovulatory oocytes comprises a new driver of infertility and low pregnancy success rates in DOR women attempting spontaneous pregnancy and in COS/IUI patients, especially AMA women. We speculate that endogenous FSH elevation also contributes to reduced fecundity in these DOR and COS/IUI patients. Restoration of oocyte maturation by ActRIB:Fc suggests that activin suppresses oocyte maturation in vivo. This contrasts with prior studies showing activin A promotes oocyte maturation in vitro. Improved oocyte maturation with agents that decrease endogenous activin activity with high specificity may have therapeutic benefit for COS/IVF patients, COS/IUI patients, and DOR patients attempting spontaneous pregnancies.


Subject(s)
Activin Receptors, Type II , Oocytes , Animals , Female , Oocytes/drug effects , Mice , Activin Receptors, Type II/metabolism , Ovulation/drug effects , Chorionic Gonadotropin/pharmacology , Follicle Stimulating Hormone/blood , Oogenesis/drug effects , Ovulation Induction/methods , Immunoglobulin Fc Fragments/pharmacology , Aging/drug effects , Aging/physiology , Pregnancy , Activins
3.
Mol Hum Reprod ; 29(10)2023 09 30.
Article in English | MEDLINE | ID: mdl-37643633

ABSTRACT

While there is consensus that advanced maternal age (AMA) reduces oocyte yield and quality, the notion that high FSH reduces oocyte quality and causes aneuploidy remains controversial, perhaps due to difficulties controlling the confounding variables of age and FSH levels. Here, contributions of age and gonadotrophin elevation were separately controlled using a mouse model of human female reproductive aging. Ovulated oocytes were collected from young and midlife mice after 0-, 2.6-, or 17-day treatment with the FSH analog equine chorionic gonadotrophin (eCG), to model both exogenous FSH elevation within a single treatment cycle (as in controlled ovarian stimulation (COS)), and chronic endogenous FSH elevation during multiple cycles (as in diminished ovarian reserve). After 17-day eCG, fewer total oocytes/mouse are ovulated in midlife than young mice, and a precipitous decline in viable oocytes/mouse is observed in midlife but not young mice throughout eCG treatment. eCG is potently ootoxic to ovulatory oocytes and strongly induces chromosome- and spindle-misalignments within 2.6 days of eCG in midlife, but only after 17 days in young mice. These data indicate that AMA increases susceptibility to multiple adverse effects of elevated FSH activity in ovulated oocytes, including declines in total and viable oocytes/mouse, and induction of ootoxicity and aneuploidy. Two hypotheses are proposed for underlying causes of infertility in women. The FSH OOToxicity Hypothesis ('FOOT Hypothesis') posits that high FSH is ootoxic to ovulatory oocytes and that FSH ootoxicity is a root cause of low pregnancy success rates in naturally cycling women with high FSH and IUI patients undergoing COS. The '2-Hit Hypothesis' posits that AMA increases susceptibility to FSH-induced ootoxicity and aneuploidy.


Subject(s)
Gonadotropins , Oocytes , Pregnancy , Female , Humans , Animals , Horses , Maternal Age , Aging/physiology , Chromosomes , Follicle Stimulating Hormone/pharmacology , Aneuploidy
5.
Article in English | MEDLINE | ID: mdl-30555421

ABSTRACT

Approximately, 10-15% of women of reproductive age are affected by endometriosis, which often leads to infertility. Endometriosis often has an inherited component, and several causative predisposing factors are hypothesized to underlie the pathogenesis of endometriosis. One working hypothesis is the theory of retrograde menstruation. According to the theory of retrograde menstruation, components of refluxed blood, including apoptotic endometrial tissue, desquamated menstrual cells, lysed erythrocytes, and released iron, induce inflammation in the peritoneal cavity. This in turn activates macrophage release of reactive oxygen species (ROS), leading to oxidative stress via the respiratory burst. Refluxed blood promotes the Fenton reaction, terminating in the production of hydroxyl radical, the most potently destructive ROS. In this article, we review the papers that demonstrate decreased quantity and quality of oocytes and embryos retrieved from IVF/ICSI patients with endometriosis. We discuss literature data demonstrating that ROS are generated in endometriotic tissues that have physical proximity to gametes and embryos, and demonstrating adverse impacts on oocyte, sperm and embryo microtubule apparatus, chromosomes, and DNA. Data that addresses the notions that endometriosis causes oocyte and fetal aneuploidy and that these events are mediated by ROS species are also discussed. Literature data are also discussed that employ use of anti-oxidant molecules to evaluate the importance of ROS-mediated oxidative damage in the pathogenesis of endometriosis. Studies are discussed that have employed anti-oxidants compounds as therapeutics to improve oocyte and embryo quality in infertile subjects, and improve fertility in patients with endometriosis.

6.
Endocrinology ; 157(3): 1234-47, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26713784

ABSTRACT

Women of advanced maternal age (AMA) (age ≥ 35) have increased rates of infertility, miscarriages, and trisomic pregnancies. Collectively these conditions are called "egg infertility." A root cause of egg infertility is increased rates of oocyte aneuploidy with age. AMA women often have elevated endogenous FSH. Female senescence-accelerated mouse-prone-8 (SAMP8) has increased rates of oocyte spindle aberrations, diminished fertility, and rising endogenous FSH with age. We hypothesize that elevated FSH during the oocyte's FSH-responsive growth period is a cause of abnormalities in the meiotic spindle. We report that eggs from SAMP8 mice treated with equine chorionic gonadotropin (eCG) for the period of oocyte growth have increased chromosome and spindle misalignments. Activin is a molecule that raises FSH, and ActRIIB:Fc is an activin decoy receptor that binds and sequesters activin. We report that ActRIIB:Fc treatment of midlife SAMP8 mice for the duration of oocyte growth lowers FSH, prevents egg chromosome and spindle misalignments, and increases litter sizes. AMA patients can also have poor responsiveness to FSH stimulation. We report that although eCG lowers yields of viable oocytes, ActRIIB:Fc increases yields of viable oocytes. ActRIIB:Fc and eCG cotreatment markedly reduces yields of viable oocytes. These data are consistent with the hypothesis that elevated FSH contributes to egg aneuploidy, declining fertility, and poor ovarian response and that ActRIIB:Fc can prevent egg aneuploidy, increase fertility, and improve ovarian response. Future studies will continue to examine whether ActRIIB:Fc works via FSH and/or other pathways and whether ActRIIB:Fc can prevent aneuploidy, increase fertility, and improve stimulation responsiveness in AMA women.


Subject(s)
Activin Receptors, Type II/pharmacology , Activins/drug effects , Aging/genetics , Chromosome Segregation/drug effects , Fertility/drug effects , Follicle Stimulating Hormone/metabolism , Immunoglobulin Fc Fragments/pharmacology , Oocytes/drug effects , Spindle Apparatus/drug effects , Activins/metabolism , Animals , CHO Cells , Chorionic Gonadotropin/pharmacology , Cricetulus , Female , Fertility/genetics , Horses , Litter Size , Maternal Age , Meiosis/drug effects , Mice , Oocyte Retrieval , Oocytes/metabolism , Oocytes/pathology , Reproductive Control Agents/pharmacology
7.
Endocrinology ; 155(6): 2287-300, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24654787

ABSTRACT

Women experience a series of specific transitions in their reproductive function with age. Shortening of the menstrual cycle begins in the mid to late 30s and is regarded as the first sign of reproductive aging. Other early changes include elevation and increased variance of serum FSH levels, increased incidences of oocyte spindle aberrations and aneuploidy, and declining fertility. The goal of this study was to investigate whether the mouse strain senescence-accelerated mouse-prone-8 (SAMP8) is a suitable model for the study of these midlife reproductive aging characteristics. Midlife SAMP8 mice aged 6.5-7.85 months (midlife SAMP8) exhibited shortened estrous cycles compared with SAMP8 mice aged 2-3 months (young SAMP8, P = .0040). Midlife SAMP8 mice had high FSH levels compared with young SAMP8 mice, and mice with a single day of high FSH exhibited statistically elevated FSH throughout the cycle, ranging from 1.8- to 3.6-fold elevation on the days of proestrus, estrus, metestrus, and diestrus (P < .05). Midlife SAMP8 mice displayed more variance in FSH than young SAMP8 mice (P = .01). Midlife SAMP8 ovulated fewer oocytes (P = .0155). SAMP8 oocytes stained with fluorescently labeled antitubulin antibodies and scored in fluorescence microscopy exhibited increased incidence of meiotic spindle aberrations with age, from 2/126 (1.59%) in young SAMP8 to 38/139 (27.3%) in midlife SAMP8 (17.2-fold increase, P < .0001). Finally, SAMP8 exhibited declining fertility from 8.9 pups/litter in young SAMP8 to 3.5 pups/litter in midlife SAMP8 mice (P < .0001). The age at which these changes occur is younger than for most mouse strains, and their simultaneous occurrence within a single strain has not been described previously. We propose that SAMP8 mice are a model of midlife human female reproductive aging.


Subject(s)
Aging/blood , Estrous Cycle/physiology , Follicle Stimulating Hormone/blood , Oocytes/metabolism , Aging/physiology , Animals , Female , Fertility/physiology , Humans , Mice
8.
Mol Carcinog ; 47(1): 34-46, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17626252

ABSTRACT

Transcriptional regulation via activator protein-1 (AP-1) protein binding to AP-1 binding sites within gene promoter regions of AP-1 target genes plays a key role in controlling cellular invasion, proliferation, and oncogenesis, and is important to pathogenesis of arthritis and cardiovascular disease. To identify new proteins that interact with the AP-1 DNA binding site, we performed the DNA affinity chromatography-based Nucleotide Affinity Preincubation Specificity TEst of Recognition (NAPSTER) assay, and discovered a 97 kDa protein that binds in vitro to a minimal AP-1 DNA sequence element. Mass spectrometric fragmentation sequencing determined that p97 is nucleolin. Immunoblotting of DNA affinity-purified material with anti-nucleolin antibodies confirmed this identification. Nucleolin also binds the AP-1 site in gel shift assays. Nucleolin interacts in NAPSTER with the AP-1 site within the promoter sequence of the metalloproteinase-13 gene (MMP-13), and binds in vivo in chromatin immunoprecipitation assays in the vicinity of the AP-1 site in the MMP-13 promoter. Overexpression of nucleolin in human HeLa cervical carcinoma cells significantly represses AP-1 dependent gene transactivation of a minimal AP-1 reporter construct and of an MMP-13 promoter reporter sequence. This is the first report of nucleolin binding and transregulation at the AP-1 site.


Subject(s)
DNA/metabolism , Matrix Metalloproteinase 13/genetics , Phosphoproteins/metabolism , RNA-Binding Proteins/metabolism , Transcription Factor AP-1/genetics , Transcriptional Activation , Adenocarcinoma , Amino Acid Sequence , Base Sequence , Cell Line, Tumor , DNA/chemistry , DNA/genetics , Humans , Mass Spectrometry , Molecular Sequence Data , Peptide Fragments/chemistry , Plasmids , Protein Binding , Transcription Factor AP-1/metabolism , Nucleolin
9.
Biochim Biophys Acta ; 1769(9-10): 525-31, 2007.
Article in English | MEDLINE | ID: mdl-17822788

ABSTRACT

Matrix metalloproteinases (MMPs) are key enzymes that implement degradation of the extracellular matrix during cellular invasion in development, tissue remodeling, and pathogenic disease states. MMP-13 has pivotal roles in the pathogenesis of invasive cancers and arthritis. Here we report the identification of Y-box binding protein-1 (YB-1) as a new repressor of MMP-13 transactivation. YB-1 binds in vitro in DNA affinity chromatography to the activator protein-1 (AP-1) DNA sequence within the MMP-13 promoter. Chromatin immunoprecipitation assays reveal that YB-1 binds in living cells to the MMP-13 gene promoter to a region of the MMP-13 promoter containing the AP-1 site. YB-1 represses tumor promoter-induced MMP-13 promoter transactivation at the AP-1 site. This is the first report demonstrating YB-1 binding in vitro and in living cells to a mammalian AP-1 target gene, and the first report of YB-1 regulation of the MMP-13 promoter.


Subject(s)
DNA-Binding Proteins/metabolism , Gene Expression Regulation, Enzymologic/physiology , Matrix Metalloproteinase 13/metabolism , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Response Elements/physiology , Transcription Factor AP-1/metabolism , Transcriptional Activation/physiology , DNA-Binding Proteins/genetics , HeLa Cells , Humans , Matrix Metalloproteinase 13/genetics , Nuclear Proteins/genetics , Protein Binding , Repressor Proteins/genetics , Transcription Factor AP-1/genetics , Y-Box-Binding Protein 1
10.
Crit Rev Toxicol ; 37(7): 587-605, 2007.
Article in English | MEDLINE | ID: mdl-17674213

ABSTRACT

Biological effects of low-dose radiation (LDR) in somatic cells have captured the interest of radiobiologists for the last two decades. Apoptosis of germ cells is required for normal spermatogenesis and often occurs through highly conserved events, including the transfer of vital cellular materials to the growing gametes following death of neighboring cells. Apoptosis of germ cells also functions in diverse processes, including removal of abnormal or superfluous cells at specific checkpoints, establishment of caste differentiation, and individualization of gametes. Moreover, germ cells are very sensitive to radiation-induced genomic and cytological effects. Therefore, induction of germ-cell apoptosis has been observed in the testis of animals exposed to both high-dose radiation (HDR) and LDR. Exposure of male germ cells to LDR induces a stimulating effect, while exposure to HDR causes an inhibitory effect on the metabolism, antioxidant capacity, and proliferation and maturation of cells, a phenomenon termed hormesis. Preexposure to LDR also protects cells from subsequently HDR-induced genomic and cytological effects, a phenomenon termed adaptive response. This review describes the features of male germ-cell apoptosis. It reviews the evidence that LDR induces the hormesis and adaptive responses in the male germ cells in terms of apoptosis. This review also discusses the possible effects of LDR-induced apoptotic hormesis and adaptive response on the modulation of inheritable genomic damage caused by subsequent radiation exposure to male germ cells.


Subject(s)
Adaptation, Physiological/radiation effects , Apoptosis/radiation effects , Dose-Response Relationship, Radiation , Spermatozoa/radiation effects , Animals , Male , Mice , Rats , Spermatozoa/pathology , Testis/pathology , Testis/radiation effects
12.
Biochem J ; 388(Pt 3): 921-8, 2005 Jun 15.
Article in English | MEDLINE | ID: mdl-15702969

ABSTRACT

Involvement of the AP-1 (activator protein-1) transcription factor has been demonstrated previously in the regulation of cell proliferation and cell-cycle progression, in the control of cell migration, invasion and metastasis, and in signal transduction, stress responsiveness, DNA replication and DNA repair. YB-1 (Y-box-binding protein-1) has also been implicated in many of these processes. However, the mechanism by which YB-1 mediates these processes is poorly understood. In the present study, we report that overexpression of a transfected gene encoding YB-1 in human HeLa cervical carcinoma cells significantly represses the transactivation of a minimal AP-1 reporter construct in response to the tumour promoter PMA. YB-1 also represses mRNA expression and PMA-induced promoter transactivation of the endogenous AP-1 target gene encoding matrix metalloproteinase-12 (metalloelastase). YB-1 transrepression of both the minimal and matrix metalloproteinase-12 promoter reporter constructs is dependent on the AP-1 sequence. To identify new nuclear proteins that bind specifically to the AP-1 DNA-binding site, we devised a DNA-affinity-chromatography-based assay termed NAPSTER (nucleotide-affinity preincubation specificity test of recognition) and discovered a 49 kDa protein from human cancer cells that binds in a sequence-specific manner to the AP-1 DNA sequence. By tandem MS fragmentation sequencing analyses we determined that p49 is a YB-1. Immunoblotting of the NAPSTER-purified p49 protein using anti-YB-1 antibodies confirmed YB-1 binding to the AP-1 DNA sequence, as did gel mobility-supershift assays using YB-1 antibodies. This is the first report of YB-1 transrepression and interaction at the AP-1 DNA-binding site.


Subject(s)
DNA-Binding Proteins/metabolism , DNA/genetics , DNA/metabolism , Transcription Factor AP-1/antagonists & inhibitors , Transcriptional Activation/genetics , Base Sequence , Cell Nucleus , Chromatography, Affinity , DNA-Binding Proteins/genetics , Down-Regulation , Electrophoretic Mobility Shift Assay , Genes, Reporter/genetics , HT29 Cells , HeLa Cells , Humans , Matrix Metalloproteinase 12 , Metalloendopeptidases/genetics , Mutation/genetics , Nuclear Proteins , Protein Subunits , Protein Transport , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Substrate Specificity , Transcription Factor AP-1/chemistry , Transcription Factor AP-1/metabolism , Y-Box-Binding Protein 1
13.
Mol Carcinog ; 39(1): 34-60, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14694446

ABSTRACT

Relative expression levels of 9500 genes were determined by cDNA microarray analyses in mouse skin JB6 cells susceptible (P+) and resistant (P-) to 12-O-tetradecanoyl phorbol-13 acetate (TPA)-induced neoplastic transformation. Seventy-four genes in 6 functional classes were differentially expressed: (I) extracellular matrix (ECM) and basement membrane (BM) proteins (20 genes). P+ cells express higher levels than P- cells of several collagens and proteases, and lower levels of protease inhibitors. Multiple genes encoding adhesion molecules are expressed preferentially in P- cells, including six genes implicated in axon guidance and adhesion. (II) Cytoskeletal proteins (13 genes). These include actin isoforms and regulatory proteins, almost all preferentially expressed in P- cells. (III) Signal transduction proteins (12 genes). Among these are Ras-GTPase activating protein (Ras-GAP), the deleted in oral cancer-1 and SLIT2 tumor suppressors, and connexin 43 (Cx43) gap junctional protein, all expressed preferentially in P- cells. (IV) Interferon-inducible proteins (3 genes). These include interferon-inducible protein (IFI)-16, an Sp1 transcriptional regulator expressed preferentially in P- cells. (V) Other transcription factors (4 genes). Paired related homeobox gene 2 (Prx2)/S8 homeobox, and retinoic acid (RA)-regulated nur77 and cellular retinoic acid-binding protein II (CRABPII) transcription factors are expressed preferentially in P- cells. The RIN-ZF Sp-transcriptional suppressor exhibits preferential P+ expression. (VI) Genes of unknown functions (22 sequences). Numerous mesenchymal markers are expressed in both cell types. Data for multiple genes were confirmed by real-time PCR. Overall, 26 genes were newly implicated in cancer. Detailed analyses of the functions of the genes and their interrelationships provided converging evidence for their possible roles in implementing genetic programs mediating cancer susceptibility and resistance. These results, in conjunction with cell wounding and phalloidin staining data, indicated that concerted genetic programs were implemented that were conducive to cell adhesion and tumor suppression in P- cells and that favored matrix turnover, cell motility, and abrogation of tumor suppression in P+ cells. Such genetic programs may in part be orchestrated by Sp-, RA-, and Hox-transcriptional regulatory pathways implicated in this study.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Transformation, Neoplastic/genetics , Drug Resistance, Neoplasm/genetics , Genetic Predisposition to Disease , Interferons/pharmacology , Oligonucleotide Array Sequence Analysis , Animals , Biomarkers, Tumor/metabolism , Carcinogens/pharmacology , Cell Adhesion/physiology , Cell Movement/physiology , Gene Expression Profiling , Mice , Neoplasm Proteins/metabolism , RNA, Messenger/genetics , RNA, Neoplasm/genetics , Signal Transduction , Tetradecanoylphorbol Acetate/pharmacology , Transcription, Genetic
14.
J Natl Cancer Inst ; 95(24): 1846-59, 2003 Dec 17.
Article in English | MEDLINE | ID: mdl-14679154

ABSTRACT

BACKGROUND: The Tax oncoproteins are transcriptional regulators of viral expression involved in pathogenesis induced by complex leukemogenic retroviruses (or delta-retroviruses, i.e., primate T-cell leukemia viruses and bovine leukemia virus). To better understand the molecular pathways leading to cell transformation, we aimed to identify cellular proteins interacting with Tax. METHODS: We used a yeast two-hybrid system to identify interacting cellular proteins. Interactions between Tax and candidate interacting cellular proteins were confirmed by glutathione S-transferase (GST) pulldown assays, co-immunoprecipitation, and confocal microscopy. Functional interactions between Tax and one interacting protein, tristetraprolin (TTP), were assessed by analyzing the expression of tumor necrosis factor-alpha (TNF-alpha), which is regulated by TTP, in mammalian cells (HeLa, D17, HEK 293, and RAW 264.7) transiently transfected with combinations of intact and mutant Tax and TTP. RESULTS: We obtained seven interacting cellular proteins, of which one, TTP, was further characterized. Tax and TTP were found to interact specifically through their respective carboxyl-terminal domains. The proteins colocalized in the cytoplasm in a region surrounding the nucleus of HeLa cells. Furthermore, coexpression of Tax was associated with nuclear accumulation of TTP. TTP is an immediate-early protein that inhibits expression of TNF-alpha at the post-transcriptional level. Expression of Tax reverted this inhibition, both in transient transfection experiments and in stably transfected macrophage cell lines. CONCLUSION: Tax, through its interactions with the TTP repressor, indirectly increases TNF-alpha expression. This observation is of importance for the cell transformation process induced by leukemogenic retroviruses, because TNF-alpha overexpression plays a central role in pathogenesis.


Subject(s)
DNA-Binding Proteins , Gene Expression Regulation, Neoplastic , Gene Products, tax/metabolism , Human T-lymphotropic virus 1 , Immediate-Early Proteins/metabolism , Leukemia Virus, Bovine , Neoplasms/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Cattle , DNA, Complementary/analysis , Humans , Immediate-Early Proteins/genetics , Microscopy, Confocal , Mutation , Neoplasms/virology , Plasmids , Polymerase Chain Reaction , Precipitin Tests , Transfection , Tristetraprolin , Up-Regulation , beta-Galactosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...