Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
1.
Magn Reson Med ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38818673

ABSTRACT

PURPOSE: To study implant lead tip heating because of the RF power deposition by developing mathematical models and comparing them with measurements acquired at 1.5 T and 3 T, especially to predict resonant length. THEORY AND METHODS: A simple exponential model and an adapted transmission line model for the electric field transfer function were developed. A set of wavenumbers, including that calculated from insulated antenna theory (King wavenumber) and that of the embedding medium were considered. Experiments on insulated, capped wires of varying lengths were performed to determine maximum temperature rise under RF exposure. The results are compared with model predictions from analytical expressions derived under the assumption of a constant electric field, and with those numerically calculated from spatially varying, simulated electric fields from body coil transmission. Simple expressions for the resonant length bounded between one-quarter and one-half wavelength are developed based on the roots of transcendental equations. RESULTS: The King wavenumber for both models more closely matched the experimental data with a maximum root mean square error of 9.81°C at 1.5 T and 5.71°C at 3 T compared to other wavenumbers with a maximum root mean square error of 27.52°C at 1.5 T and 22.01°C for 3 T. Resonant length was more accurately predicted compared to values solely based on the embedding medium. CONCLUSION: Analytical expressions were developed for implanted lead heating and resonant lengths under specific assumptions. The value of the wavenumber has a strong effect on the model predictions. Our work could be used to better manage implanted device lead tip heating.

2.
Magn Reson Imaging ; 109: 189-202, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38490504

ABSTRACT

BACKGROUND: Echo planar imaging (EPI) is a fast measurement technique commonly used in magnetic resonance imaging (MRI), but is highly sensitive to measurement non-idealities in reconstruction. Point spread function (PSF)-encoded EPI is a multi-shot strategy which alleviates distortion, but acquisition of encodings suitable for direct distortion-free imaging prolongs scan time. In this work, a model-based iterative reconstruction (MBIR) framework is introduced for direct imaging with PSF-EPI to improve image quality and acceleration potential. METHODS: An MBIR platform was developed for accelerated PSF-EPI. The reconstruction utilizes a subspace representation, is regularized to promote local low-rankedness (LLR), and uses variable splitting for efficient iteration. Comparisons were made against standard reconstructions from prospectively accelerated PSF-EPI data and with retrospective subsampling. Exploring aggressive partial Fourier acceleration of the PSF-encoding dimension, additional comparisons were made against an extension of Homodyne to direct PSF-EPI in numerical experiments. A neuroradiologists' assessment was completed comparing images reconstructed with MBIR from retrospectively truncated data directly against images obtained with standard reconstructions from non-truncated datasets. RESULTS: Image quality results were consistently superior for MBIR relative to standard and Homodyne reconstructions. As the MBIR signal model and reconstruction allow for arbitrary sampling of the PSF space, random sampling of the PSF-encoding dimension was also demonstrated, with quantitative assessments indicating best performance achieved through nonuniform PSF sampling combined with partial Fourier. With retrospective subsampling, MBIR reconstructs high-quality images from sub-minute scan datasets. MBIR was shown to be superior in a neuroradiologists' assessment with respect to three of five performance criteria, with equivalence for the remaining two. CONCLUSIONS: A novel image reconstruction framework is introduced for direct imaging with PSF-EPI, enabling arbitrary PSF space sampling and reconstruction of diagnostic-quality images from highly accelerated PSF-encoded EPI data.


Subject(s)
Brain , Echo-Planar Imaging , Retrospective Studies , Echo-Planar Imaging/methods , Brain/diagnostic imaging , Algorithms , Tomography, X-Ray Computed , Image Processing, Computer-Assisted/methods
3.
Top Magn Reson Imaging ; 32(5): 37-49, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37796647

ABSTRACT

OBJECTIVES: Locally low-rank (LLR) denoising of functional magnetic resonance imaging (fMRI) time series image data is extended to multi-echo (ME) data. The proposed method extends the capabilities of non-physiologic noise suppression beyond single-echo applications with a dedicated ME algorithm. MATERIALS AND METHODS: Following an institutional review board (IRB) approved protocol, resting-state fMRI data were acquired in 7 healthy subjects. A compact 3T scanner enabled whole-brain acquisition of multiband ME fMRI data at high spatial resolution (1.4 × 1.4 × 2.8 mm 3 ) with a 1810 ms repetition time (TR). Image data were denoised with ME-LLR preceding functional processing. The results of connectivity maps generated from denoised data were compared with maps generated with equivalent processing of non-denoised images. To assess ME-LLR as a method to reduce scan time, comparisons were made between maps computed from image data with full and retrospectively truncated durations. Assessments were completed with seed-based connectivity analyses using echo-combined image data. In a feasibility assessment, nondenoised and denoised full-duration echo-combined data were equivalently processed with independent component analysis (ICA) and compared. RESULTS: ME-LLR denoising yielded strengthened resting-state network connectivity maps after nuisance regression and seed-based connectivity analysis. In assessing ME-LLR as a scan reduction mechanism, maps generated from denoised data at half scan time showed comparable quality with maps generated from full-duration, non-denoised data, at both single subject and group levels. ME-LLR substantially increased temporal signal-to-noise ratio (tSNR) for image data respective to each individual echo and for image data after nuisance regression. Among echo-specific image volumes, increases in tSNR yielded by ME-LLR were most pronounced for image data with the longest echo time and thereby lowest SNR. ICA showed resting-state networks consistently identified between non-denoised and denoised data, with clearer demarcation of networks for ME-LLR. CONCLUSIONS: ME-LLR is demonstrated to suppress non-physiologic noise, enhance functional connectivity map quality, and could potentially facilitate scan time reduction in ME-fMRI.


Subject(s)
Brain , Magnetic Resonance Imaging , Humans , Retrospective Studies , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/physiology , Brain Mapping/methods , Signal-To-Noise Ratio , Image Processing, Computer-Assisted/methods
4.
J Neurosci ; 43(39): 6697-6711, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37620159

ABSTRACT

Stimulation-evoked signals are starting to be used as biomarkers to indicate the state and health of brain networks. The human limbic network, often targeted for brain stimulation therapy, is involved in emotion and memory processing. Previous anatomic, neurophysiological, and functional studies suggest distinct subsystems within the limbic network (Rolls, 2015). Studies using intracranial electrical stimulation, however, have emphasized the similarities of the evoked waveforms across the limbic network. We test whether these subsystems have distinct stimulation-driven signatures. In eight patients (four male, four female) with drug-resistant epilepsy, we stimulated the limbic system with single-pulse electrical stimulation. Reliable corticocortical evoked potentials (CCEPs) were measured between hippocampus and the posterior cingulate cortex (PCC) and between the amygdala and the anterior cingulate cortex (ACC). However, the CCEP waveform in the PCC after hippocampal stimulation showed a unique and reliable morphology, which we term the "limbic Hippocampus-Anterior nucleus of the thalamus-Posterior cingulate, HAP-wave." This limbic HAP-wave was visually distinct and separately decoded from the CCEP waveform in ACC after amygdala stimulation. Diffusion MRI data show that the measured end points in the PCC overlap with the end points of the parolfactory cingulum bundle rather than the parahippocampal cingulum, suggesting that the limbic HAP-wave may travel through fornix, mammillary bodies, and the anterior nucleus of the thalamus (ANT). This was further confirmed by stimulating the ANT, which evoked the same limbic HAP-wave but with an earlier latency. Limbic subsystems have unique stimulation-evoked signatures that may be used in the future to help network pathology diagnosis.SIGNIFICANCE STATEMENT The limbic system is often compromised in diverse clinical conditions, such as epilepsy or Alzheimer's disease, and characterizing its typical circuit responses may provide diagnostic insight. Stimulation-evoked waveforms have been used in the motor system to diagnose circuit pathology. We translate this framework to limbic subsystems using human intracranial stereo EEG (sEEG) recordings that measure deeper brain areas. Our sEEG recordings describe a stimulation-evoked waveform characteristic to the memory and spatial subsystem of the limbic network that we term the "limbic HAP-wave." The limbic HAP-wave follows anatomic white matter pathways from hippocampus to thalamus to the posterior cingulum and shows promise as a distinct biomarker of signaling in the human brain memory and spatial limbic network.


Subject(s)
Anterior Thalamic Nuclei , Epilepsy , Humans , Male , Female , Limbic System/physiology , Electroencephalography , Evoked Potentials/physiology , Electric Stimulation
5.
Magn Reson Imaging ; 103: 109-118, 2023 11.
Article in English | MEDLINE | ID: mdl-37468020

ABSTRACT

Access to high-quality MR exams is severely limited for patients with some implanted devices due to labeled MR safety conditions, but small-bore systems can overcome this limitation. For example, a compact 3 T MR scanner (C3T) with high-performance gradients can acquire exams of the head, extremities, and infants. Because of its reduced bore size and the patient being advanced only partially into the bore, the associated electromagnetic (EM) fields drop off rapidly caudal to the head, compared to whole-body systems. Therefore, some patients with MR conditional implanted devices can safely receive 3 T brain exams on the C3T using its strong gradients and a multiple-channel receive coil, while a corresponding exam on whole-body MR is precluded. The purpose of this study is to evaluate the performance of a small-bore scanner for subjects with MR conditional spinal or sacral nerve stimulators, or abandoned cardiac implantable electronic device (CIED) leads. The spatial dependence of specific absorption rate (SAR) on the C3T was compared to whole-body scanners. A device assessment tool was developed and applied to evaluate MR safety individually on the C3T for 12 subjects with implanted devices or abandoned CIED leads. Once MR safety was established, the subjects received a C3T brain exam along with their clinical, 1.5 T exam. The resulting images were graded by three board-certified neuroradiologists. The C3T exams were well-tolerated with no adverse events, and significantly outperformed the whole-body 1.5 T exams in terms of overall image quality.


Subject(s)
Magnetic Resonance Imaging , Prostheses and Implants , Humans , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Heart , Head
6.
Sensors (Basel) ; 23(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37177534

ABSTRACT

In blood-oxygen-level-dependent (BOLD)-based resting-state functional (RS-fMRI) studies, usage of multi-echo echo-planar-imaging (ME-EPI) is limited due to unacceptable late echo times when high spatial resolution is used. Equipped with high-performance gradients, the compact 3T MRI system (C3T) enables a three-echo whole-brain ME-EPI protocol with smaller than 2.5 mm isotropic voxel and shorter than 1 s repetition time, as required in landmark fMRI studies. The performance of the ME-EPI was comprehensively evaluated with signal variance reduction and region-of-interest-, seed- and independent-component-analysis-based functional connectivity analyses and compared with a counterpart of single-echo EPI with the shortest TR possible. Through the multi-echo combination, the thermal noise level is reduced. Functional connectivity, as well as signal intensity, are recovered in the medial orbital sulcus and anterior transverse collateral sulcus in ME-EPI. It is demonstrated that ME-EPI provides superior sensitivity and accuracy for detecting functional connectivity and/or brain networks in comparison with single-echo EPI. In conclusion, the high-performance gradient enabled high-spatial-temporal resolution ME-EPI would be the method of choice for RS-fMRI study on the C3T.


Subject(s)
Brain Mapping , Echo-Planar Imaging , Echo-Planar Imaging/methods , Brain Mapping/methods , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging
7.
Clin Imaging ; 99: 47-52, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37088060

ABSTRACT

INTRODUCTION: Differentiation of calcification and calcium-containing tissue from blood products remains challenging using magnetic resonance imaging (MRI). We developed a novel post-processing algorithm which creates both paramagnetic- and diamagnetic-specific SWI images generated from T2* weighted images using distinct "positive" and "negative" phase masks. METHODS: 10 patients who had undergone clinical MRI scanning of the brain with a rapid echo planar based T2*-weighted EPI-GRE pulse sequence with evidence for either hemosiderin and/or calcifications were retrospectively identified. Complex raw k-space data from individual imaging coils were then extracted, reconstructed, and appropriately combined to produce magnitude and phase images using a phase preserving method. The final reconstructed images included the T2* EPI-GRE magnitude images, p-SWI and d-SWI images. Filtered phase images were also available for review. Correlation with CT scans and MR imaging appearance over time corroborated the composition of the voxels. RESULTS: Differential "blooming" of diamagnetic and paramagnetic foci was readily identified on the corresponding p-SWI and d-SWI images and provided fast and reliable visual differentiation of diamagnetic from paramagnetic susceptibility effects by ascertaining which of the two images depicted the greatest "blooming" effect. Correlation with the available filtered phase maps was not necessary for differentiation of paramagnetic from diamagnetic image components. CONCLUSION: Clinical interpretation of SWI images can be further enhanced by creating specific p-SWI and d-SWI image pairs which contain greater visual information than the combination of standard p-SWI images and phase image.


Subject(s)
Calcinosis , Hemosiderin , Humans , Retrospective Studies , Magnetic Resonance Imaging/methods , Brain , Magnetic Resonance Spectroscopy
8.
Phys Med Biol ; 68(2)2023 01 09.
Article in English | MEDLINE | ID: mdl-36549001

ABSTRACT

Objective. Interleaved reverse-gradient fMRI (RG-fMRI) with a point-spread-function (PSF) mapping-based distortion correction scheme has the potential to minimize signal loss in echo-planar-imaging (EPI). In this work, the RG-fMRI is further improved by imaging protocol optimization and application of reverse Fourier acquisition.Approach. Multi-band imaging was adapted for RG-fMRI to improve the temporal and spatial resolution. To better understand signal dropouts in forward and reverse EPIs, a simple theoretical relationship between echo shift and geometric distortion was derived and validated by the reliable measurements using PSF mapping method. After examining practical imaging protocols for RG-fMRI in three subjects on both a conventional whole-body and a high-performance compact 3 T, the results were compared and the feasibility to further improve the RG-fMRI scheme were explored. High-resolution breath-holding RG-fMRI was conducted with nine subjects on the compact 3 T and the fMRI reliability improvement in high susceptibility brain regions was demonstrated. Finally, reverse Fourier acquisition was applied to RG-fMRI, and its benefit was assessed by a simulation study based on the breath-holding RG-fMRI data.Main results. The temporal and spatial resolution of the multi-band RG-fMRI became feasible for whole-brain fMRI. Echo shift measurements from PSF mapping well estimated signal dropout effects in the EPI pair and were useful to further improve the RG-fMRI scheme. Breath-holding RG-fMRI demonstrated improved fMRI reliability in high susceptibility brain regions. Reverse partial Fourier acquisition omitting the late echoes could further improve the temporal or spatial resolution for RG-fMRI without noticeable signal degradation and spatial resolution loss.Significance. With the improved imaging scheme, RG-fMRI could reliably investigate the functional mechanisms of the human brain in the temporal and frontal areas suffering from susceptibility-induced functional sensitivity loss.


Subject(s)
Artifacts , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Reproducibility of Results , Brain/diagnostic imaging , Echo-Planar Imaging/methods , Brain Mapping/methods , Image Processing, Computer-Assisted
9.
Neuroradiol J ; 36(3): 273-288, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36063799

ABSTRACT

OBJECTIVE: This study investigates a locally low-rank (LLR) denoising algorithm applied to source images from a clinical task-based functional MRI (fMRI) exam before post-processing for improving statistical confidence of task-based activation maps. METHODS: Task-based motor and language fMRI was obtained in eleven healthy volunteers under an IRB approved protocol. LLR denoising was then applied to raw complex-valued image data before fMRI processing. Activation maps generated from conventional non-denoised (control) data were compared with maps derived from LLR-denoised image data. Four board-certified neuroradiologists completed consensus assessment of activation maps; region-specific and aggregate motor and language consensus thresholds were then compared with nonparametric statistical tests. Additional evaluation included retrospective truncation of exam data without and with LLR denoising; a ROI-based analysis tracked t-statistics and temporal SNR (tSNR) as scan durations decreased. A test-retest assessment was performed; retest data were matched with initial test data and compared for one subject. RESULTS: fMRI activation maps generated from LLR-denoised data predominantly exhibited statistically significant (p = 4.88×10-4 to p = 0.042; one p = 0.062) increases in consensus t-statistic thresholds for motor and language activation maps. Following data truncation, LLR data showed task-specific increases in t-statistics and tSNR respectively exceeding 20 and 50% compared to control. LLR denoising enabled truncation of exam durations while preserving cluster volumes at fixed thresholds. Test-retest showed variable activation with LLR data thresholded higher in matching initial test data. CONCLUSION: LLR denoising affords robust increases in t-statistics on fMRI activation maps compared to routine processing, and offers potential for reduced scan duration while preserving map quality.


Subject(s)
Algorithms , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Retrospective Studies , Language , Brain/diagnostic imaging , Brain/physiology
10.
Magn Reson Med ; 89(1): 262-275, 2023 01.
Article in English | MEDLINE | ID: mdl-36129000

ABSTRACT

PURPOSE: Asymmetric gradient coils introduce zeroth- and first-order concomitant field terms, in addition to higher-order terms common to both asymmetric and symmetric gradients. Salient to compensation strategies is the accurate calibration of the concomitant field spatial offset parameters for asymmetric coils. A method that allows for one-time calibration of the offset parameters is described. THEORY AND METHODS: A modified phase contrast pulse sequence with single-sided bipolar flow encoding is proposed to calibrate the offsets for asymmetric, transverse gradient coils. By fitting the measured phase offsets to different gradient amplitudes, the spatial offsets were calculated by fitting the phase variation. This was used for calibrating real-time pre-emphasis compensation of the zeroth- and first-order concomitant fields. RESULTS: Image quality improvement with the proposed corrections was demonstrated in phantom and healthy volunteers with non-Cartesian and Cartesian trajectory acquisitions. Concomitant field compensation using the calibrated offsets resulted in a residual phase error <3% at the highest gradient amplitude and demonstrated substantial reduction of image blur and slice position/selection artifacts. CONCLUSIONS: The proposed implementation provides an accurate method for calibrating spatial offsets that can be used for real-time concomitant field compensation of zeroth and first-order terms, substantially reducing artifacts without retrospective correction or sequence specific waveform modifications.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Humans , Image Processing, Computer-Assisted/methods , Calibration , Retrospective Studies , Magnetic Resonance Imaging/methods , Artifacts , Phantoms, Imaging
11.
Magn Reson Med ; 88(4): 1901-1911, 2022 10.
Article in English | MEDLINE | ID: mdl-35666832

ABSTRACT

PURPOSE: To demonstrate systematic, linear algebra-based, dimensional analysis to derive a scaling relationship among the design parameters of MRI gradient and harmonic shim coils. THEORY AND METHODS: The dimensions of five physical quantities relevant for gradient coil design (inductance, gradient amplitude, inner diameter [ d$$ d $$ ], current, and the permeability of free space) were decomposed into fundamental units, and their exponents were arranged into a dimensional matrix. The resulting set of homogenous equations was solved using standard linear algebraic methods. Inclusion of the number of turns as an additional unit yielded a 5 × 5 dimensional matrix with a unique, nontrivial solution. The analysis was extended to harmonic shim coils. The gradient coil scaling relationship was compared with data from 24 published gradient coil sets. RESULTS: Only when the unit of turns was included did the linear algebra-based analysis uniquely produce the known scaling relationship that gradient inductance is proportional to gradient efficiency squared times d5$$ {d}^5 $$ . By applying the same methodology to an lth order shim coil, a novel result is obtained: Shim inductance is proportional to its efficiency squared times d2l+3$$ {d}^{2l+3} $$ . The predicted power-law relationship between inductance-normalized gradient efficiency and the diameter accounted for > 92% of the efficiency variation of the surveyed gradient coils. A dimensionless parameter is proposed as an intrinsic figure-of-merit of gradient coil efficiency. CONCLUSION: Systematic application of linear algebra-based dimensional analysis can provide new insight in gradient and shim coil design by revealing fundamental scaling relations and helping to guide the design and comparison of coils with different diameters.


Subject(s)
Magnetic Resonance Imaging , Equipment Design , Magnetic Resonance Imaging/methods
12.
J Acoust Soc Am ; 151(3): 1913, 2022 03.
Article in English | MEDLINE | ID: mdl-35364910

ABSTRACT

Standard clinical protocols require hearing protection during magnetic resonance imaging (MRI) for patient safety. This investigation prospectively evaluated the auditory function impact of acoustic noise exposure during a 3.0T MRI in healthy adults. Twenty-nine participants with normal hearing underwent a comprehensive audiologic assessment before and immediately following a clinically indicated head MRI. Appropriate hearing protection with earplugs (and pads) was used per standard of practice. To characterize noise hazards, current sound monitoring tools were used to measure levels of pulse sequences measured. A third audiologic test was performed if a significant threshold shift (STS) was identified at the second test, within 30 days post MRI. Some sequences produced high levels (up to 114.5 dBA; 129 dB peak SPL) that required hearing protection but did not exceed 100% daily noise dose. One participant exhibited an STS in the frequency region most highly associated with noise-induced hearing loss. No participants experienced OSHA-defined STS in either ear. Overall, OAE measures did not show evidence of changes in cochlear function after MRI. In conclusion, hearing threshold shifts associated with hearing loss or OAE level shifts reflecting underlying cochlear damage were not detected in any of the 3.0T MRI study participants who used the current recommended hearing protection.


Subject(s)
Deafness , Hearing Loss, Noise-Induced , Ear Protective Devices , Hearing , Hearing Loss, Noise-Induced/etiology , Hearing Loss, Noise-Induced/prevention & control , Humans , Magnetic Resonance Imaging/adverse effects , Young Adult
13.
J Magn Reson Imaging ; 56(3): 917-927, 2022 09.
Article in English | MEDLINE | ID: mdl-35133061

ABSTRACT

BACKGROUND: Localized regions of left-right image intensity asymmetry (LRIA) were incidentally observed on T2 -weighted (T2 -w) and T1 -weighted (T1 -w) diagnostic magnetic resonance imaging (MRI) images. Suspicion of herpes encephalitis resulted in unnecessary follow-up imaging. A nonbiological imaging artifact that can lead to diagnostic uncertainty was identified. PURPOSE: To investigate whether systematic LRIA exist for a range of scanner models and to determine if LRIA can introduce diagnostic uncertainty. STUDY TYPE: A retrospective study using the Alzheimer's Disease Neuroimaging Initiative (ADNI) data base. SUBJECTS: One thousand seven hundred fifty-three (median age: 72, males/females: 878/875) unique participants with longitudinal data were included. FIELD STRENGTH: 3T. SEQUENCES: T1 -w three-dimensional inversion-recovery spoiled gradient-echo (IR-SPGR) or magnetization-prepared rapid gradient-echo (MP-RAGE) and T2 -w fluid-attenuated inversion recovery (FLAIR) long tau fast spin echo inversion recovery (LT-FSE-IR). Only General Electric, Philips, and Siemens' product sequences were used. ASSESSMENT: LRIA was calculated as the left-right percent difference with respect to the mean intensity from automated anatomical atlas segmented regions. Three neuroradiologists with 37 (**), 32 (**), and 3 (**) years of experience rated the clinical impact of 30 T2 -w three-dimensional FLAIR exams with LRIA to determine the diagnostic uncertainty. Statistical comparisons between retrospective intensity normalized T1 m and original T1 -w images were made. STATISTICAL TESTS: For each image type, a linear mixed effects model was fit using LRIA scores from all scanners, regions, and participants as the outcome and age and sex as predictors. Statistical significance was defined as having a P-value <0.05. RESULTS: LRIA scores were significantly different from zero on most scanners. All clinicians were uncertain or recommended definite diagnostic follow-up in 62.5% of cases with LRIA >10%. Individuals with acute brain pathology or focal neurologic deficits are not enrolled in ADNI; therefore, focal signal abnormalities were considered false positives. DATA CONCLUSION: LRIA is system specific, systematic, creates diagnostic uncertainty, and impacts IR-SPGR, MP-RAGE, and LT-FSE-IR product sequences. LEVEL OF EVIDENCE: 2 Technical Efficacy Stage: 3.


Subject(s)
Alzheimer Disease , Magnetic Resonance Imaging , Aged , Alzheimer Disease/diagnostic imaging , Female , Humans , Linear Models , Magnetic Resonance Imaging/methods , Male , Retrospective Studies
14.
J Magn Reson Imaging ; 55(1): 166-175, 2022 01.
Article in English | MEDLINE | ID: mdl-34184362

ABSTRACT

BACKGROUND: A low-cryogen, compact 3T (C3T) MRI scanner with high-performance gradients capable of simultaneously achieving 80 mT/m gradient amplitude and 700 T/m/second slew rate has been in use to study research patients since March 2016 but has not been implemented in the clinical practice. PURPOSE: To compare head MRI examinations obtained with the C3T system and a conventional whole-body 3T (WB3T) scanner in seven parameters across five commonly used brain imaging sequences. STUDY TYPE: Prospective. SUBJECTS: Thirty patients with a clinically indicated head MRI. SEQUENCE: 3T; T1 FLAIR, T1 MP-RAGE, 3D T2 FLAIR, T2 FSE, and DWI. ASSESSMENT: All patients tolerated the scans well. Three board-certified neuroradiologists scored the comparative quality of C3T and WB3T images in blinded fashion using a five-point Likert scale in terms of: signal-to-noise ratio, lesion conspicuity, motion artifact, gray/white matter contrast, cerebellar folia, susceptibility artifact, and overall quality. STATISTICAL TEST: Left-sided, right-sided, and two-sided Wilcoxon signed rank test; Fisher's method. A P value <0.05 was considered statistically significant. RESULTS: The C3T system performed better than the WB3T in virtually all comparisons, except for motion artifacts for the T1 FLAIR and T1 MP-RAGE sequences, where the WB3T system was deemed better. When combining all sequences together, the C3T system outperformed the WB3T system in all image quality parameters evaluated, except for motion artifact (P = 0.13). DATA CONCLUSION: The C3T scanner provided better overall image quality for all sequences, and performed better in all individual categories, except for motion artifact on the T1 FLAIR and T1 MP-RAGE. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 1.


Subject(s)
Brain , Magnetic Resonance Imaging , Artifacts , Brain/diagnostic imaging , Gray Matter , Humans , Prospective Studies
15.
Med Phys ; 48(8): 4523-4531, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34231224

ABSTRACT

The past decade has seen the increasing integration of magnetic resonance (MR) imaging into radiation therapy (RT). This growth can be contributed to multiple factors, including hardware and software advances that have allowed the acquisition of high-resolution volumetric data of RT patients in their treatment position (also known as MR simulation) and the development of methods to image and quantify tissue function and response to therapy. More recently, the advent of MR-guided radiation therapy (MRgRT) - achieved through the integration of MR imaging systems and linear accelerators - has further accelerated this trend. As MR imaging in RT techniques and technologies, such as MRgRT, gain regulatory approval worldwide, these systems will begin to propagate beyond tertiary care academic medical centers and into more community-based health systems and hospitals, creating new opportunities to provide advanced treatment options to a broader patient population. Accompanying these opportunities are unique challenges related to their adaptation, adoption, and use including modification of hardware and software to meet the unique and distinct demands of MR imaging in RT, the need for standardization of imaging techniques and protocols, education of the broader RT community (particularly in regards to MR safety) as well as the need to continue and support research, and development in this space. In response to this, an ad hoc committee of the American Association of Physicists in Medicine (AAPM) was formed to identify the unmet needs, roadblocks, and opportunities within this space. The purpose of this document is to report on the major findings and recommendations identified. Importantly, the provided recommendations represent the consensus opinions of the committee's membership, which were submitted in the committee's report to the AAPM Board of Directors. In addition, AAPM ad hoc committee reports differ from AAPM task group reports in that ad hoc committee reports are neither reviewed nor ultimately approved by the committee's parent groups, including at the council and executive committee level. Thus, the recommendations given in this summary should not be construed as being endorsed by or official recommendations from the AAPM.


Subject(s)
Magnetic Resonance Imaging , Radiotherapy, Image-Guided , Humans , Particle Accelerators , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , United States
16.
AJR Am J Roentgenol ; 216(2): 552-559, 2021 02.
Article in English | MEDLINE | ID: mdl-33236945

ABSTRACT

OBJECTIVE. The Adaptive Image Receive (AIR) radiofrequency coil is an emergent technology that is lightweight and flexible and exhibits electrical characteristics that overcome many of the limitations of traditional rigid coil designs. The purpose of this study was to apply the AIR coil for whole-brain imaging and compare the performance of a prototype AIR coil array with the performance of conventional head coils. SUBJECTS AND METHODS. A phantom and 15 healthy adult participants were imaged. A prototype 16-channel head AIR coil was compared with conventional 8-and 32-channel head coils using clinically available MRI sequences. During consensus review, two board-certified neuroradiologists graded the AIR coil compared with an 8-channel coil and a 32-channel coil on a 5-point ordinal scale in multiple categories. One- and two-sided Wilcoxon signed rank tests were performed. Noise covariance matrices and geometry factor (g-factor) maps were calculated. RESULTS. The signal-to-noise ratio, structural sharpness, and overall image quality scores of the prototype 16-channel AIR coil were better than those of the 8-channel coil but were not as good as those of the 32-channel coil. Noise covariance matrices showed stable performance of the AIR coil across participants. The median g-factors for the 16-channel AIR coil were, overall, less than those of the 8-channel coil but were greater than those of the 32-channel coil. CONCLUSION. On average, the prototype 16-channel head AIR coil outperformed a conventional 8-channel head coil but did not perform as well as a conventional 32-channel head coil. This study shows the feasibility of the novel AIR coil technology for imaging the brain and provides insight for future coil design improvements.


Subject(s)
Artifacts , Brain/diagnostic imaging , Magnetic Resonance Imaging , Neuroimaging , Adult , Feasibility Studies , Female , Humans , Male , Middle Aged , Phantoms, Imaging , Signal-To-Noise Ratio , Young Adult
17.
Phys Med Biol ; 65(23): 235024, 2020 11 27.
Article in English | MEDLINE | ID: mdl-33245051

ABSTRACT

Improved gradient performance in an MRI system reduces distortion in echo planar imaging (EPI), which has been a key imaging method for functional studies. A lightweight, low-cryogen compact 3T MRI scanner (C3T) is capable of achieving 80 mT m-1 gradient amplitude with 700 T m-1 s-1 slew rate, in comparison with a conventional whole-body 3T MRI scanner (WB3T, 50 mT m-1 with 200 T m-1 s-1). We investigated benefits of the high-performance gradients in a high-spatial-resolution (1.5 mm isotropic) functional MRI study. Reduced echo spacing in the EPI pulse sequence inherently leads to less severe geometric distortion, which provided higher accuracy than with WB3T for registration between EPI and anatomical images. The cortical coverage of C3T datasets was improved by more accurate signal depiction (i.e. less dropout or pile-up). Resting-state functional analysis results showed that greater magnitude and extent in functional connectivity (FC) for the C3T than the WB3T when the selected seed region is susceptible to distortions, while the FC matrix for well-known brain networks showed little difference between the two scanners. This shows that the improved quality in EPI is particularly valuable for studying certain brain regions typically obscured by severe distortion.


Subject(s)
Echo-Planar Imaging/methods , Rest , Brain/diagnostic imaging , Humans
18.
Phys Med Biol ; 65(15): 15NT02, 2020 07 31.
Article in English | MEDLINE | ID: mdl-32503007

ABSTRACT

One of the major concerns associated with high-performance gradients is peripheral nerve stimulation (PNS) of the subject during MRI exams. Since the installation, more than 680 volunteer subjects (patients and controls) have been scanned on a compact 3 T MRI system with high-performance gradients, capable of 80 mT m-1 gradient amplitude and 700 T m-1 s-1 slew rate simultaneously. Despite PNS concerns associated with the high-performance gradients, due to the smaller physical dimensions of the gradient coils, minimal or no PNS sensation was reported with most pulse sequences. The exception was PNS reported by only five of 252 subjects (about 2%) scanned with a specific 3D fast spin echo pulse sequence (3DFLAIR). Rather than derating the entire system performance across all pulse sequences and all gradient lobes, we addressed reported PNS effect with a simple and specific modification to the targeted lobes of the problematic pulse sequence. in addition, the PNS convolutional model was adapted to predict sequence-specific PNS threshold level and its reduction after derating. The effectiveness of the targeted pulse sequence modification was demonstrated by successfully re-scanning four of the subjects who previously reported PNS sensations without further reported PNS. The pulse sequence modification did not result in noticeable degradation of image quality or substantial increase in scan time. The results demonstrated that PNS was rarely reported on the compact 3 T, and when it was, utilizing a specific modification of the gradient waveform causing PNS was an effective strategy, rather than derating the performance of the entire gradient system.


Subject(s)
Electric Stimulation , Magnetic Resonance Imaging/instrumentation , Peripheral Nerves , Humans , Peripheral Nerves/diagnostic imaging
19.
Magn Reson Med ; 84(2): 950-965, 2020 08.
Article in English | MEDLINE | ID: mdl-32011027

ABSTRACT

PURPOSE: We investigate the importance of high gradient-amplitude and high slew-rate on oscillating gradient spin echo (OGSE) diffusion imaging for human brain imaging and evaluate human brain imaging with OGSE on the MAGNUS head-gradient insert (200 mT/m amplitude and 500 T/m/s slew rate). METHODS: Simulations with cosine-modulated and trapezoidal-cosine OGSE at various gradient amplitudes and slew rates were performed. Six healthy subjects were imaged with the MAGNUS gradient at 3T with OGSE at frequencies up to 100 Hz and b = 450 s/mm2 . Comparisons were made against standard pulsed gradient spin echo (PGSE) diffusion in vivo and in an isotropic diffusion phantom. RESULTS: Simulations show that to achieve high frequency and b-value simultaneously for OGSE, high gradient amplitude, high slew rates, and high peripheral nerve stimulation limits are required. A strong linear trend for increased diffusivity (mean: 8-19%, radial: 9-27%, parallel: 8-15%) was observed in normal white matter with OGSE (20 Hz to 100 Hz) as compared to PGSE. Linear fitting to frequency provided excellent correlation, and using a short-range disorder model provided radial long-term diffusivities of D∞,MD = 911 ± 72 µm2 /s, D∞,PD = 1519 ± 164 µm2 /s, and D∞,RD = 640 ± 111 µm2 /s and correlation lengths of lc,MD = 0.802 ± 0.156 µm, lc,PD = 0.837 ± 0.172 µm, and lc,RD = 0.780 ± 0.174 µm. Diffusivity changes with OGSE frequency were negligible in the phantom, as expected. CONCLUSION: The high gradient amplitude, high slew rate, and high peripheral nerve stimulation thresholds of the MAGNUS head-gradient enables OGSE acquisition for in vivo human brain imaging.


Subject(s)
Brain , Diffusion Magnetic Resonance Imaging , Brain/diagnostic imaging , Diffusion , Humans , Neuroimaging , Phantoms, Imaging
20.
J Magn Reson Imaging ; 51(1): 296-310, 2020 01.
Article in English | MEDLINE | ID: mdl-31111581

ABSTRACT

BACKGROUND: Distortion-free, high-resolution diffusion imaging using DIADEM (Distortion-free Imaging: A Double Encoding Method), proposed recently, has great potential for clinical applications. However, it can suffer from prolonged scan times and its reliability for quantitative diffusion imaging has not been evaluated. PURPOSE: To investigate the clinical feasibility of DIADEM-based high-resolution diffusion imaging on a novel compact 3T (C3T) by evaluating the reliability of quantitative diffusion measurements and utilizing both the high-performance gradients (80 mT/m, 700 T/m/s) and the sequence optimization with the navigator acquisition window reduction and simultaneous multislice (multiband) imaging. STUDY TYPE: Prospective feasibility study. PHANTOM/SUBJECTS: Diffusion quality control phantom scans to evaluate the reliability of quantitative diffusion measurements; 36 normal control scans for B0 -field mapping; six healthy and two patient subject scans with a brain tumor for comparisons of diffusion and anatomical imaging. FIELD STRENGTH/SEQUENCE: 3T; the standard single-shot echo-planar-imaging (EPI), multishot DIADEM diffusion, and anatomical (2D-FSE [fast-spin-echo], 2D-FLAIR [fluid-attenuated-inversion-recovery], and 3D-MPRAGE [magnetization prepared rapid acquisition gradient echo]) imaging. ASSESSMENT: The scan time reduction, the reliability of quantitative diffusion measurements, and the clinical efficacy for high-resolution diffusion imaging in healthy control and brain tumor volunteers. STATISTICAL TEST: Bland-Altman analysis. RESULTS: The scan time for high in-plane (0.86 mm2 ) resolution, distortion-free, and whole brain diffusion imaging were reduced from 10 to 5 minutes with the sequence optimizations. All of the mean apparent diffusion coefficient (ADC) values in phantom were within the 95% confidence interval in the Bland-Altman plot. The proposed acquisition with a total off-resonance coverage of 597.2 Hz wider than the expected bandwidth of 500 Hz in human brain could yield a distortion-free image without foldover artifacts. Compared with EPI, therefore, this approach allowed direct image matching with the anatomical images and enabled improved delineation of the tumor boundaries. DATA CONCLUSION: The proposed high-resolution diffusion imaging approach is clinically feasible on C3T due to a combination of hardware and sequence improvements. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 1 J. Magn. Reson. Imaging 2020;51:296-310.


Subject(s)
Brain/anatomy & histology , Diffusion Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods , Echo-Planar Imaging , Feasibility Studies , Humans , Phantoms, Imaging , Prospective Studies , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...