Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Article in English | MEDLINE | ID: mdl-34795055

ABSTRACT

Retinitis pigmentosa (RP) is the most common group of inherited retinal degenerative diseases, whose most debilitating phase is cone photoreceptor death. Perimetric and electroretinographic methods are the gold standards for diagnosing and monitoring RP and assessing cone function. However, these methods lack the spatial resolution and sensitivity to assess disease progression at the level of individual photoreceptor cells, where the disease originates and whose degradation causes vision loss. High-resolution retinal imaging methods permit visualization of human cone cells in vivo but have only recently achieved sufficient sensitivity to observe their function as manifested in the cone optoretinogram. By imaging with phase-sensitive adaptive optics optical coherence tomography, we identify a biomarker in the cone optoretinogram that characterizes individual cone dysfunction by stimulating cone cells with flashes of light and measuring nanometer-scale changes in their outer segments. We find that cone optoretinographic responses decrease with increasing RP severity and that even in areas where cone density appears normal, cones can respond differently than those in controls. Unexpectedly, in the most severely diseased patches examined, we find isolated cones that respond normally. Short-wavelength-sensitive cones are found to be more vulnerable to RP than medium- and long-wavelength-sensitive cones. We find that decreases in cone response and cone outer-segment length arise earlier in RP than changes in cone density but that decreases in response and length are not necessarily correlated within single cones.


Subject(s)
Ophthalmoscopy/methods , Retina/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Retinitis Pigmentosa/metabolism , Electroretinography , Eye Proteins/metabolism , Humans
2.
Invest Ophthalmol Vis Sci ; 62(2): 8, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33544131

ABSTRACT

Purpose: Psychophysical and genetic testing provide substantial information about color vision phenotype and genotype. However, neither reveals how color vision phenotypes and genotypes manifest themselves in individual cones, where color vision and its anomalies are thought to originate. Here, we use adaptive-optics phase-sensitive optical coherence tomography (AO-PSOCT) to investigate these relationships. Methods: We used AO-PSOCT to measure cone function-optical response to light stimulation-in each of 16 human subjects with different phenotypes and genotypes of color vision (five color-normal, three deuteranopic, two protanopic, and six deuteranomalous trichromatic subjects). We classified three spectral types of cones (S, M, and L), and we measured cone structure-namely cone density, cone mosaic arrangement, and spatial arrangement of cone types. Results: For the different phenotypes, our cone function results show that (1) color normals possess S, M, and L cones; (2) deuteranopes are missing M cones but are normal otherwise; (3) protanopes are missing L cones but are normal otherwise; and (4) deuteranomalous trichromats are missing M cones but contain evidence of at least two subtypes of L cones. Cone function was consistent with the subjects' genotype in which only the first two M and L genes in the gene array are expressed and was correlated with the estimated spectral separation between photopigments, including in the deuteranomalous trichromats. The L/M cone ratio was highly variable in the color normals. No association was found between cone density and the genotypes and phenotypes investigated, and the cone mosaic arrangement was altered in the dichromats. Conclusions: AO-PSOCT is a novel method for assessing color vision phenotype and genotype in single cone cells.


Subject(s)
Color Vision Defects/genetics , Color Vision/genetics , Retinal Cone Photoreceptor Cells/metabolism , Retinal Pigments/metabolism , Adult , Color Perception/physiology , Color Vision Defects/metabolism , Color Vision Defects/pathology , Female , Genotype , Humans , Male , Middle Aged , Phenotype , Retinal Cone Photoreceptor Cells/pathology , Tomography, Optical Coherence/methods , Young Adult
3.
J Biophotonics ; 13(10): e202000090, 2020 10.
Article in English | MEDLINE | ID: mdl-32468737

ABSTRACT

Optical Coherence Tomography angiography (OCTA) is a widespread tool for depth-resolved imaging of chorioretinal vasculature with single microvessel resolution. To improve the clinical interpretation of OCTA, the conditions affecting visualization of microvessels must be defined. Here we inject a scattering plasma tracer (Intralipid) during OCTA imaging of the anesthetized rat eye. In the retina, we find that interlaminar (vertical) vessels that connect laminae have one-fourth to one-third the OCTA red blood cell to tracer (RBC-to-tracer) signal ratio of intralaminar (horizontal) vessels. This finding suggests that the OCTA signal from microvessels depends on angular orientation, making vertically-oriented vessels more difficult to visualize using intrinsic contrast alone. Clinicians should be aware of this potential artifact when interpreting OCTA.


Subject(s)
Angiography , Tomography, Optical Coherence , Artifacts , Microvessels/diagnostic imaging , Retina
4.
Neuroimage ; 202: 116067, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31394180

ABSTRACT

Studies of flow-metabolism coupling often presume that microvessel architecture is a surrogate for blood flow. To test this assumption, we introduce an in vivo Dynamic Contrast Optical Coherence Tomography (DyC-OCT) method to quantify layer-resolved microvascular blood flow and volume across the full depth of the mouse neocortex, where the angioarchitecture has been previously described. First, we cross-validate average DyC-OCT cortical flow against conventional Doppler OCT flow. Next, with laminar DyC-OCT, we discover that layer 4 consistently exhibits the highest microvascular blood flow, approximately two-fold higher than the outer cortical layers. While flow differences between layers are well-explained by microvascular volume and density, flow differences between subjects are better explained by transit time. Finally, from layer-resolved tracer enhancement, we also infer that microvascular hematocrit increases in deep cortical layers, consistent with predictions of plasma skimming. Altogether, our results show that while the cortical blood supply derives mainly from the pial surface, laminar hemodynamics ensure that the energetic needs of individual cortical layers are met. The laminar trends reported here provide data that links predictions based on the cortical angioarchitecture to cerebrovascular physiology in vivo.


Subject(s)
Cerebrovascular Circulation/physiology , Hemodynamics/physiology , Models, Neurological , Neocortex/blood supply , Neocortex/physiology , Animals , Male , Mice , Mice, Inbred C57BL , Microvessels/anatomy & histology , Microvessels/physiology , Tomography, Optical Coherence
5.
Biomed Opt Express ; 9(4): 1477-1491, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29675296

ABSTRACT

Chromatic aberrations are an important design consideration in high resolution, high bandwidth, refractive imaging systems that use visible light. Here, we present a fiber-based spectral/Fourier domain, visible light OCT ophthalmoscope corrected for the average longitudinal chromatic aberration (LCA) of the human eye. Analysis of complex speckles from in vivo retinal images showed that achromatization resulted in a speckle autocorrelation function that was ~20% narrower in the axial direction, but unchanged in the transverse direction. In images from the improved, achromatized system, the separation between Bruch's membrane (BM), the retinal pigment epithelium (RPE), and the outer segment tips clearly emerged across the entire 6.5 mm field-of-view, enabling segmentation and morphometry of BM and the RPE in a human subject. Finally, cross-sectional images depicted distinct inner retinal layers with high resolution. Thus, with chromatic aberration compensation, visible light OCT can achieve volume resolutions and retinal image quality that matches or exceeds ultrahigh resolution near-infrared OCT systems with no monochromatic aberration compensation.

6.
Biomed Opt Express ; 9(3): 1020-1040, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29541501

ABSTRACT

Optical coherence tomography angiography (OCTA) has recently emerged for imaging vasculature in clinical ophthalmology. Yet, OCTA images contain artifacts that remain challenging to interpret. To help explain these artifacts, we perform contrast-enhanced OCTA with a custom-designed wide-field ophthalmoscope in rats in vivo. We choose an intravascular contrast agent (Intralipid) with particles that are more isotropically scattering and more symmetrically shaped than red blood cells (RBCs). Then, by examining how OCTA artifacts change after contrast agent injection, we attribute OCTA artifacts to RBC-specific properties. In this work, we investigate retinal and choroidal OCTA in rats with or without melanosomes, both before and after contrast agent injection, at a wavelength at which scattering dominates the image contrast (1300 nm). First, baseline images suggest that high backscattering of choroidal melanosomes accounts for the relatively dark appearance of choroidal vessel lumens in OCTA. Second, Intralipid injection tends to eliminate the hourglass pattern artifact in OCTA images of vessel lumens and highlights vertical capillaries that were previously faint in OCTA, showing that RBC orientation is important in determining OCTA signal. Third, Intralipid injection increases lumen signal without significantly affecting the tails, suggesting that projection artifacts, or tails, are due to RBC multiple scattering. Fourth, Intralipid injection increases the side-to-top signal ratio less in choroidal vessel lumens of pigmented rats, suggesting that melanosome multiple scattering makes the hourglass artifact less prominent. This study provides the first direct experimental in vivo evidence to explain light scattering-related artifacts in OCTA.

7.
Biomed Opt Express ; 8(1): 323-337, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-28101421

ABSTRACT

The design of a multi-functional fiber-based Optical Coherence Tomography (OCT) system for human retinal imaging with < 2 micron axial resolution in tissue is described. A detailed noise characterization of two supercontinuum light sources with different pulse repetition rates is presented. The higher repetition rate and lower noise source is found to enable a sensitivity of 96 dB with 0.15 mW light power at the cornea and a 98 microsecond exposure time. Using a broadband (560 ± 50 nm), 90/10, fused single-mode fiber coupler designed for visible wavelengths, the sample arm is integrated into an ophthalmoscope platform, similar to current clinical OCT systems. To demonstrate the instrument's range of operation, in vivo structural retinal imaging is also shown at 0.15 mW exposure with 10,000 and 70,000 axial scans per second (the latter comparable to commercial OCT systems), and at 0.03 mW exposure and 10,000 axial scans per second (below maximum permissible continuous exposure levels). Lastly, in vivo spectroscopic imaging of anatomy, saturation, and hemoglobin content in the human retina is also demonstrated.

8.
Appl Sci (Basel) ; 7(7)2017 Jul.
Article in English | MEDLINE | ID: mdl-30009045

ABSTRACT

Optical Coherence Tomography Angiography (OCTA) refers to a powerful class of OCT scanning protocols and algorithms that selectively enhance the imaging of blood vessel lumens, based mainly on the motion and scattering of red blood cells (RBCs). Though OCTA is widely used in clinical and basic science applications for visualization of perfused blood vessels, OCTA is still primarily a qualitative tool. However, more quantitative hemodynamic information would better delineate disease mechanisms, and potentially improve the sensitivity for detecting early stages of disease. Here, we take a broader view of OCTA in the context of microvascular hemodynamics and light scattering. Paying particular attention to the unique challenges presented by capillaries versus larger supplying and draining vessels, we critically assess opportunities and challenges in making OCTA a quantitative tool.

9.
J Biomed Opt ; 21(2): 20502, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26882447

ABSTRACT

Recently, optical coherence tomography (OCT) angiography has enabled label-free imaging of vasculature based on dynamic scattering in vessels. However, quantitative volumetric analysis of the vascular networks depicted in OCT angiography data has remained challenging. Multiple-scattering tails (artifacts specific to the imaging geometry) make automated assessment of vascular morphology problematic. We demonstrate that dynamically focused optical coherence microscopy (OCM) angiography with a high numerical aperture, chosen so the scattering length greatly exceeds the depth-of-field, significantly reduces the deleterious effect of multiple-scattering tails in synthesized angiograms. Capitalizing on the improved vascular image quality, we devised and tailored a self-correcting automated graphing approach that achieves a reconstruction of cortical microvasculature from OCM angiography data sets with accuracy approaching that attained by trained operators. The automated techniques described here will facilitate more widespread study of vascular network topology in health and disease.


Subject(s)
Angiography/methods , Brain/blood supply , Image Processing, Computer-Assisted/methods , Microscopy/methods , Tomography, Optical Coherence/methods , Animals , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...