Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(43): 40387-40395, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37929137

ABSTRACT

Graphene is a carbon material with extraordinary properties that has been drawing a significant amount of attention in the recent decade. High-quality graphene can be produced by different methods, such as epitaxial growth, chemical vapor deposition, and micromechanical exfoliation. The reduced graphene oxide route is, however, the only current approach that leads to the large-scale production of graphene materials at a reasonable cost. Unfortunately, graphene oxide reduction normally yields graphene materials with a high defect density. Here, we introduce a new route for the large-scale synthesis of graphene that minimizes the creation of structural defects. The method involves high-quality hydrogen functionalization of graphite followed by thermal dehydrogenation. We also demonstrated that the hydrogenated graphene synthesis route can be used for the preparation of high-quality graphene films on glass substrates. A reliable method for the preparation of these types of films is essential for the widespread implementation of graphene devices. The structural evolution from the hydrogenated form to graphene, as well as the quality of the materials and films, was carefully evaluated by Raman spectroscopy.

2.
ACS Omega ; 7(48): 43548-43558, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36506207

ABSTRACT

An economical and facile method to synthesize a precursor for carbon films and materials has been developed. This precursor can be easily coated onto substrates without binder reagents and then converted into a graphitic-like structure after mild thermal treatment. This approach potentially allows the coating of glass surfaces of different shapes and forms, such as the inside of a glass tube, for instance. The precursor consists of tetrahedral halocarbyne units which randomly combine through single electron transfer with organometallic compounds to create a poly(carbyne)-like polymeric material. Advanced characterization tools reveal that the synthesized product (poly(halocarbyne) or PXC, where X indicate the presence of halogens, is composed mostly of carbon, hydrogen, and a variable percentage of residual halocarbon groups. Therefore, it possesses good solubility in organic solvents and can be coated on any complex substrate. The coated PXC material produced here was annealed under mild conditions, leading to the production of a graphitic-like film on a glass substrate. The chemical homogeneity of the carbon material of the film was confirmed by Raman spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL
...