Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Biochem Soc Trans ; 52(3): 1349-1362, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38752836

ABSTRACT

Transposable elements (TEs) are highly expressed in preimplantation development. Preimplantation development is the phase when the cells of the early embryo undergo the first cell fate choice and change from being totipotent to pluripotent. A range of studies have advanced our understanding of TEs in preimplantation, as well as their epigenetic regulation and functional roles. However, many questions remain about the implications of TE expression during early development. Challenges originate first due to the abundance of TEs in the genome, and second because of the limited cell numbers in preimplantation. Here we review the most recent technological advancements promising to shed light onto the role of TEs in preimplantation development. We explore novel avenues to identify genomic TE insertions and improve our understanding of the regulatory mechanisms and roles of TEs and their RNA and protein products during early development.


Subject(s)
DNA Transposable Elements , Embryonic Development , Epigenesis, Genetic , DNA Transposable Elements/genetics , Humans , Animals , Embryonic Development/genetics , Gene Expression Regulation, Developmental , Blastocyst/metabolism
2.
Mol Cell ; 84(6): 1021-1035.e11, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38359823

ABSTRACT

In the male mouse germ line, PIWI-interacting RNAs (piRNAs), bound by the PIWI protein MIWI2 (PIWIL4), guide DNA methylation of young active transposons through SPOCD1. However, the underlying mechanisms of SPOCD1-mediated piRNA-directed transposon methylation and whether this pathway functions to protect the human germ line remain unknown. We identified loss-of-function variants in human SPOCD1 that cause defective transposon silencing and male infertility. Through the analysis of these pathogenic alleles, we discovered that the uncharacterized protein C19ORF84 interacts with SPOCD1. DNMT3C, the DNA methyltransferase responsible for transposon methylation, associates with SPOCD1 and C19ORF84 in fetal gonocytes. Furthermore, C19ORF84 is essential for piRNA-directed DNA methylation and male mouse fertility. Finally, C19ORF84 mediates the in vivo association of SPOCD1 with the de novo methylation machinery. In summary, we have discovered a conserved role for the human piRNA pathway in transposon silencing and C19ORF84, an uncharacterized protein essential for orchestrating piRNA-directed DNA methylation.


Subject(s)
DNA Methylation , Piwi-Interacting RNA , Male , Humans , Animals , Mice , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Proteins/metabolism , Germ Cells/metabolism , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , DNA Transposable Elements/genetics , Mammals/metabolism
4.
Eur J Immunol ; 52(7): 1058-1068, 2022 07.
Article in English | MEDLINE | ID: mdl-35460072

ABSTRACT

The RNA-binding protein polypyrimidine tract binding protein 1 (PTBP1) has been found to have roles in CD4 T-cell activation, but its function in CD8 T cells remains untested. We show it is dispensable for the development of naïve mouse CD8 T cells, but is necessary for the optimal expansion and production of effector molecules by antigen-specific CD8 T cells in vivo. PTBP1 has an essential role in regulating the early events following activation of the naïve CD8 T cell leading to IL-2 and TNF production. It is also required to protect activated CD8 T cells from apoptosis. PTBP1 controls alternative splicing of over 400 genes in naïve CD8 T cells in addition to regulating the abundance of ∼200 mRNAs. PTBP1 is required for the nuclear accumulation of c-Fos, NFATc2, and NFATc3, but not NFATc1. This selective effect on NFAT proteins correlates with PTBP1-promoted expression of the shorter Aß1 isoform and exon 13 skipped Aß2 isoform of the catalytic A-subunit of calcineurin phosphatase. These findings reveal a crucial role for PTBP1 in regulating CD8 T-cell activation.


Subject(s)
CD8-Positive T-Lymphocytes , Polypyrimidine Tract-Binding Protein , Alternative Splicing , Animals , CD8-Positive T-Lymphocytes/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Mice , Polypyrimidine Tract-Binding Protein/genetics , Polypyrimidine Tract-Binding Protein/metabolism , Protein Isoforms/metabolism
5.
Nat Biotechnol ; 40(4): 546-554, 2022 04.
Article in English | MEDLINE | ID: mdl-34782740

ABSTRACT

Transposable elements (TEs) regulate diverse biological processes, from early development to cancer. Expression of young TEs is difficult to measure with next-generation, single-cell sequencing technologies because their highly repetitive nature means that short complementary DNA reads cannot be unambiguously mapped to a specific locus. Single CELl LOng-read RNA-sequencing (CELLO-seq) combines long-read single cell RNA-sequencing with computational analyses to measure TE expression at unique loci. We used CELLO-seq to assess the widespread expression of TEs in two-cell mouse blastomeres as well as in human induced pluripotent stem cells. Across both species, old and young TEs showed evidence of locus-specific expression with simulations demonstrating that only a small number of very young elements in the mouse could not be mapped back to the reference with high confidence. Exploring the relationship between the expression of individual elements and putative regulators revealed large heterogeneity, with TEs within a class showing different patterns of correlation and suggesting distinct regulatory mechanisms.


Subject(s)
DNA Transposable Elements , Induced Pluripotent Stem Cells , Animals , DNA Transposable Elements/genetics , Humans , Mice , RNA
6.
Genome Biol ; 21(1): 182, 2020 07 27.
Article in English | MEDLINE | ID: mdl-32718321

ABSTRACT

BACKGROUND: Hypoxia is pervasive in cancer and other diseases. Cells sense and adapt to hypoxia by activating hypoxia-inducible transcription factors (HIFs), but it is still an outstanding question why cell types differ in their transcriptional response to hypoxia. RESULTS: We report that HIFs fail to bind CpG dinucleotides that are methylated in their consensus binding sequence, both in in vitro biochemical binding assays and in vivo studies of differentially methylated isogenic cell lines. Based on in silico structural modeling, we show that 5-methylcytosine indeed causes steric hindrance in the HIF binding pocket. A model wherein cell-type-specific methylation landscapes, as laid down by the differential expression and binding of other transcription factors under normoxia, control cell-type-specific hypoxia responses is observed. We also discover ectopic HIF binding sites in repeat regions which are normally methylated. Genetic and pharmacological DNA demethylation, but also cancer-associated DNA hypomethylation, expose these binding sites, inducing HIF-dependent expression of cryptic transcripts. In line with such cryptic transcripts being more prone to cause double-stranded RNA and viral mimicry, we observe low DNA methylation and high cryptic transcript expression in tumors with high immune checkpoint expression, but not in tumors with low immune checkpoint expression, where they would compromise tumor immunotolerance. In a low-immunogenic tumor model, DNA demethylation upregulates cryptic transcript expression in a HIF-dependent manner, causing immune activation and reducing tumor growth. CONCLUSIONS: Our data elucidate the mechanism underlying cell-type-specific responses to hypoxia and suggest DNA methylation and hypoxia to underlie tumor immunotolerance.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , DNA Methylation , Hypoxia-Inducible Factor 1/metabolism , Hypoxia/metabolism , Tumor Escape , A549 Cells , Humans , Immune Tolerance , MCF-7 Cells
7.
Nat Commun ; 11(1): 3739, 2020 07 27.
Article in English | MEDLINE | ID: mdl-32719317

ABSTRACT

The PIWI protein MIWI2 and its associated PIWI-interacting RNAs (piRNAs) instruct DNA methylation of young active transposable elements (TEs) in the male germline. piRNAs are proposed to recruit MIWI2 to the transcriptionally active TE loci by base pairing to nascent transcripts, however the downstream mechanisms and effector proteins utilized by MIWI2 in directing de novo TE methylation remain incompletely understood. Here, we show that MIWI2 associates with TEX15 in foetal gonocytes. TEX15 is predominantly a nuclear protein that is not required for piRNA biogenesis but is essential for piRNA-directed TE de novo methylation and silencing. In summary, TEX15 is an essential executor of mammalian piRNA-directed DNA methylation.


Subject(s)
Argonaute Proteins/metabolism , Cell Cycle Proteins/metabolism , DNA Methylation/genetics , DNA Transposable Elements/genetics , Gene Silencing , Animals , Argonaute Proteins/genetics , Female , Fetus/cytology , Genome , Germ Cells/metabolism , Male , Mice , Mice, Inbred C57BL , Protein Binding , Testis/metabolism
8.
Nature ; 584(7822): 635-639, 2020 08.
Article in English | MEDLINE | ID: mdl-32674113

ABSTRACT

In mammals, the acquisition of the germline from the soma provides the germline with an essential challenge: the need to erase and reset genomic methylation1. In the male germline, RNA-directed DNA methylation silences young, active transposable elements2-4. The PIWI protein MIWI2 (PIWIL4) and its associated PIWI-interacting RNAs (piRNAs) instruct DNA methylation of transposable elements3,5. piRNAs are proposed to tether MIWI2 to nascent transposable element transcripts; however, the mechanism by which MIWI2 directs the de novo methylation of transposable elements is poorly understood, although central to the immortality of the germline. Here we define the interactome of MIWI2 in mouse fetal gonocytes undergoing de novo genome methylation and identify a previously unknown MIWI2-associated factor, SPOCD1, that is essential for the methylation and silencing of young transposable elements. The loss of Spocd1 in mice results in male-specific infertility but does not affect either piRNA biogenesis or the localization of MIWI2 to the nucleus. SPOCD1 is a nuclear protein whose expression is restricted to the period of de novo genome methylation. It co-purifies in vivo with DNMT3L and DNMT3A, components of the de novo methylation machinery, as well as with constituents of the NURD and BAF chromatin remodelling complexes. We propose a model whereby tethering of MIWI2 to a nascent transposable element transcript recruits repressive chromatin remodelling activities and the de novo methylation apparatus through SPOCD1. In summary, we have identified a previously unrecognized and essential executor of mammalian piRNA-directed DNA methylation.


Subject(s)
DNA Methylation/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Animals , Argonaute Proteins/metabolism , Chromatin Assembly and Disassembly , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methyltransferase 3A , DNA Transposable Elements/genetics , Female , Fertility/genetics , Gene Silencing , Genes, Intracisternal A-Particle/genetics , Long Interspersed Nucleotide Elements/genetics , Male , Mice , RNA, Small Interfering/biosynthesis , Spermatogenesis/genetics
9.
Genome Biol ; 20(1): 43, 2019 02 22.
Article in English | MEDLINE | ID: mdl-30795792

ABSTRACT

Following publication of the original article [1], it was reported that the incorrect "Additional file 3" was published. The correct additional file is given below.

10.
Transl Psychiatry ; 8(1): 195, 2018 10 12.
Article in English | MEDLINE | ID: mdl-30315171

ABSTRACT

Maternal overnutrition has been associated with increased susceptibility to develop obesity and neurological disorders later in life. Most epidemiological as well as experimental studies have focused on the metabolic consequences across generations following an early developmental nutritional insult. Recently, it has been shown that maternal high-fat diet (HFD) affects third-generation female body mass via the paternal lineage. We showed here that the offspring born to HFD ancestors displayed addictive-like behaviors as well as obesity and insulin resistance up to the third generation in the absence of any further exposure to HFD. These findings, implicate that the male germ line is a major player in transferring phenotypic traits. These behavioral and physiological alterations were paralleled by reduced striatal dopamine levels and increased dopamine 2 receptor density. Interestingly, by the third generation a clear gender segregation emerged, where females showed addictive-like behaviors while male HFD offspring showed an obesogenic phenotype. However, methylome profiling of F1 and F2 sperm revealed no significant difference between the offspring groups, suggesting that the sperm methylome might not be the major carrier for the transmission of the phenotypes observed in our mouse model. Together, our study for the first time demonstrates that maternal HFD insult causes sustained alterations of the mesolimbic dopaminergic system suggestive of a predisposition to develop obesity and addictive-like behaviors across multiple generations.


Subject(s)
Behavior, Addictive/genetics , Maternal Nutritional Physiological Phenomena , Metabolic Syndrome/genetics , Overnutrition , Prenatal Exposure Delayed Effects/genetics , Animals , Body Weight , Diet, High-Fat/adverse effects , Disease Models, Animal , Female , Male , Mice , Mice, Inbred C57BL , Obesity/genetics , Pregnancy
11.
Nat Struct Mol Biol ; 25(5): 394-404, 2018 05.
Article in English | MEDLINE | ID: mdl-29728652

ABSTRACT

Defective germline reprogramming in Piwil4 (Miwi2)- and Dnmt3l-deficient mice results in the failure to reestablish transposon silencing, meiotic arrest and progressive loss of spermatogonia. Here we sought to understand the molecular basis for this spermatogonial dysfunction. Through a combination of imaging, conditional genetics and transcriptome analysis, we demonstrate that germ cell elimination in the respective mutants arises as a result of defective de novo genome methylation during reprogramming rather than because of a function for the respective factors within spermatogonia. In both Miwi2-/- and Dnmt3l-/- spermatogonia, the intracisternal-A particle (IAP) family of endogenous retroviruses is derepressed, but, in contrast to meiotic cells, DNA damage is not observed. Instead, we find that unmethylated IAP promoters rewire the spermatogonial transcriptome by driving expression of neighboring genes. Finally, spermatogonial numbers, proliferation and differentiation are altered in Miwi2-/- and Dnmt3l-/- mice. In summary, defective reprogramming deregulates the spermatogonial transcriptome and may underlie spermatogonial dysfunction.


Subject(s)
Argonaute Proteins/genetics , Cellular Reprogramming/physiology , DNA (Cytosine-5-)-Methyltransferases/genetics , Genes, Intracisternal A-Particle/genetics , Spermatogonia/pathology , Animals , Cells, Cultured , DNA Methylation/genetics , DNA Transposable Elements/genetics , Male , Meiosis/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Transcriptome/genetics
12.
Genome Biol ; 19(1): 33, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29544553

ABSTRACT

BACKGROUND: Whole-genome bisulfite sequencing (WGBS) is becoming an increasingly accessible technique, used widely for both fundamental and disease-oriented research. Library preparation methods benefit from a variety of available kits, polymerases and bisulfite conversion protocols. Although some steps in the procedure, such as PCR amplification, are known to introduce biases, a systematic evaluation of biases in WGBS strategies is missing. RESULTS: We perform a comparative analysis of several commonly used pre- and post-bisulfite WGBS library preparation protocols for their performance and quality of sequencing outputs. Our results show that bisulfite conversion per se is the main trigger of pronounced sequencing biases, and PCR amplification builds on these underlying artefacts. The majority of standard library preparation methods yield a significantly biased sequence output and overestimate global methylation. Importantly, both absolute and relative methylation levels at specific genomic regions vary substantially between methods, with clear implications for DNA methylation studies. CONCLUSIONS: We show that amplification-free library preparation is the least biased approach for WGBS. In protocols with amplification, the choice of bisulfite conversion protocol or polymerase can significantly minimize artefacts. To aid with the quality assessment of existing WGBS datasets, we have integrated a bias diagnostic tool in the Bismark package and offer several approaches for consideration during the preparation and analysis of WGBS datasets.


Subject(s)
Artifacts , DNA Methylation , Gene Library , Sulfites , Whole Genome Sequencing/methods , Polymerase Chain Reaction
13.
Cell Stem Cell ; 21(5): 694-703.e7, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29100015

ABSTRACT

Erasure of DNA methylation and repressive chromatin marks in the mammalian germline leads to risk of transcriptional activation of transposable elements (TEs). Here, we used mouse embryonic stem cells (ESCs) to identify an endosiRNA-based mechanism involved in suppression of TE transcription. In ESCs with DNA demethylation induced by acute deletion of Dnmt1, we saw an increase in sense transcription at TEs, resulting in an abundance of sense/antisense transcripts leading to high levels of ARGONAUTE2 (AGO2)-bound small RNAs. Inhibition of Dicer or Ago2 expression revealed that small RNAs are involved in an immediate response to demethylation-induced transposon activation, while the deposition of repressive histone marks follows as a chronic response. In vivo, we also found TE-specific endosiRNAs present during primordial germ cell development. Our results suggest that antisense TE transcription is a "trap" that elicits an endosiRNA response to restrain acute transposon activity during epigenetic reprogramming in the mammalian germline.


Subject(s)
DNA Demethylation , DNA Transposable Elements/genetics , Embryonic Stem Cells/metabolism , RNA, Small Interfering/metabolism , Animals , Argonaute Proteins/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , Female , Gene Deletion , Gene Knockdown Techniques , Histone Code , Histones/metabolism , Male , Mice , RNA Interference , Transcription, Genetic
14.
Nat Struct Mol Biol ; 24(7): 604-606, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28530707

ABSTRACT

In mice, the pathway involving PIWI and PIWI-interacting RNA (PIWI-piRNA) is essential to re-establish transposon silencing during male-germline reprogramming. The cytoplasmic PIWI protein MILI mediates piRNA-guided transposon RNA cleavage as well as piRNA amplification. MIWI2's binding to piRNA and its nuclear localization are proposed to be dependent upon MILI function. Here, we demonstrate the existence of a piRNA biogenesis pathway that sustains partial MIWI2 function and reprogramming activity in the absence of MILI.


Subject(s)
Argonaute Proteins/metabolism , Gene Expression Regulation , RNA, Small Interfering/metabolism , Animals , Argonaute Proteins/deficiency , Mice , Mice, Knockout
15.
Dev Cell ; 39(1): 104-115, 2016 10 10.
Article in English | MEDLINE | ID: mdl-27728778

ABSTRACT

Primordial germ cell (PGC) development is characterized by global epigenetic remodeling, which resets genomic potential and establishes an epigenetic ground state. Here we recapitulate PGC specification in vitro from naive embryonic stem cells and characterize the early events of epigenetic reprogramming during the formation of the human and mouse germline. Following rapid de novo DNA methylation during priming to epiblast-like cells, methylation is globally erased in PGC-like cells. Repressive chromatin marks (H3K9me2/3) and transposable elements are enriched at demethylation-resistant regions, while active chromatin marks (H3K4me3 or H3K27ac) are more prominent at regions that demethylate faster. The dynamics of specification and epigenetic reprogramming show species-specific differences, in particular markedly slower reprogramming kinetics in the human germline. Differences in developmental kinetics may be explained by differential regulation of epigenetic modifiers. Our work establishes a robust and faithful experimental system of the early events of epigenetic reprogramming and regulation in the germline.


Subject(s)
Body Patterning/genetics , DNA Methylation/genetics , Germ Cells/metabolism , Animals , DNA Transposable Elements/genetics , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Humans , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Transcription, Genetic
16.
Cell Rep ; 17(1): 179-192, 2016 09 27.
Article in English | MEDLINE | ID: mdl-27681430

ABSTRACT

Mouse embryonic stem cells are dynamic and heterogeneous. For example, rare cells cycle through a state characterized by decondensed chromatin and expression of transcripts, including the Zscan4 cluster and MERVL endogenous retrovirus, which are usually restricted to preimplantation embryos. Here, we further characterize the dynamics and consequences of this transient cell state. Single-cell transcriptomics identified the earliest upregulated transcripts as cells enter the MERVL/Zscan4 state. The MERVL/Zscan4 transcriptional network was also upregulated during induced pluripotent stem cell reprogramming. Genome-wide DNA methylation and chromatin analyses revealed global DNA hypomethylation accompanying increased chromatin accessibility. This transient DNA demethylation was driven by a loss of DNA methyltransferase proteins in the cells and occurred genome-wide. While methylation levels were restored once cells exit this state, genomic imprints remained hypomethylated, demonstrating a potential global and enduring influence of endogenous retroviral activation on the epigenome.


Subject(s)
Endogenous Retroviruses/genetics , Epigenesis, Genetic , Genome , Mouse Embryonic Stem Cells/metabolism , Transcription Factors/genetics , Transcriptome , Animals , Cell Cycle/genetics , Cellular Reprogramming , Chromatin/chemistry , Chromatin/metabolism , DNA Methylation , DNA Modification Methylases/deficiency , DNA Modification Methylases/genetics , Endogenous Retroviruses/metabolism , Genomic Imprinting , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Mice , Mouse Embryonic Stem Cells/cytology , Multigene Family , RNA, Messenger/genetics , RNA, Messenger/metabolism , Single-Cell Analysis , Transcription Factors/metabolism , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...