Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
Redox Biol ; 67: 102909, 2023 11.
Article in English | MEDLINE | ID: mdl-37801856

ABSTRACT

Few therapies have produced significant improvement in cardiac structure and function after ischemic cardiac injury (ICI). Our possible explanation is activation of local inflammatory responses negatively impact the cardiac repair process following ischemic injury. Factors that can alter immune response, including significantly altered cytokine levels in plasma and polarization of macrophages and T cells towards a pro-reparative phenotype in the myocardium post-MI is a valid strategy for reducing infarct size and damage after myocardial injury. Our previous studies showed that cortical bone stem cells (CBSCs) possess reparative effects after ICI. In our current study, we have identified that the beneficial effects of CBSCs appear to be mediated by miRNA in their extracellular vesicles (CBSC-EV). Our studies showed that CBSC-EV treated animals demonstrated reduced scar size, attenuated structural remodeling, and improved cardiac function versus saline treated animals. These effects were linked to the alteration of immune response, with significantly altered cytokine levels in plasma, and polarization of macrophages and T cells towards a pro-reparative phenotype in the myocardium post-MI. Our detailed in vitro studies demonstrated that CBSC-EV are enriched in miR-182/183 that mediates the pro-reparative polarization and metabolic reprogramming in macrophages, including enhanced OXPHOS rate and reduced ROS, via Ras p21 protein activator 1 (RASA1) axis under Lipopolysaccharides (LPS) stimulation. In summary, CBSC-EV deliver unique molecular cargoes, such as enriched miR-182/183, that modulate the immune response after ICI by regulating macrophage polarization and metabolic reprogramming to enhance repair.


Subject(s)
Heart Injuries , MicroRNAs , Myocardial Infarction , Animals , Mice , Myocardium/metabolism , Myocardial Infarction/genetics , Macrophages/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cytokines/metabolism , GTPase-Activating Proteins/metabolism , Oxidation-Reduction , Mice, Inbred C57BL
2.
Am J Physiol Heart Circ Physiol ; 325(4): H702-H719, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37539452

ABSTRACT

Maternal hypothyroidism (MH) could adversely affect the cardiac disease responses of the progeny. This study tested the hypothesis that MH reduces early postnatal cardiomyocyte (CM) proliferation so that the adult heart of MH progeny has a smaller number of larger cardiac myocytes, which imparts adverse cardiac disease responses following injury. Thyroidectomy (TX) was used to establish MH. The progeny from mice that underwent sham or TX surgery were termed Ctrl (control) or MH (maternal hypothyroidism) progeny, respectively. MH progeny had similar heart weight (HW) to body weight (BW) ratios and larger CM size consistent with fewer CMs at postnatal day 60 (P60) compared with Ctrl (control) progeny. MH progeny had lower numbers of EdU+, Ki67+, and phosphorylated histone H3 (PH3)+ CMs, which suggests they had a decreased CM proliferation in the postnatal timeframe. RNA-seq data showed that genes related to DNA replication were downregulated in P5 MH hearts, including bone morphogenetic protein 10 (Bmp10). Both in vivo and in vitro studies showed Bmp10 treatment increased CM proliferation. After transverse aortic constriction (TAC), the MH progeny had more severe cardiac pathological remodeling compared with the Ctrl progeny. Thyroid hormone (T4) treatment for MH mothers preserved their progeny's postnatal CM proliferation capacity and prevented excessive pathological remodeling after TAC. Our results suggest that CM proliferation during early postnatal development was significantly reduced in MH progeny, resulting in fewer CMs with hypertrophy in adulthood. These changes were associated with more severe cardiac disease responses after pressure overload.NEW & NOTEWORTHY Our study shows that compared with Ctrl (control) progeny, the adult progeny of mothers who have MH (MH progeny) had fewer CMs. This reduction of CM numbers was associated with decreased postnatal CM proliferation. Gene expression studies showed a reduced expression of Bmp10 in MH progeny. Bmp10 has been linked to myocyte proliferation. In vivo and in vitro studies showed that Bmp10 treatment of MH progeny and their myocytes could increase CM proliferation. Differences in CM number and size in adult hearts of MH progeny were linked to more severe cardiac structural and functional remodeling after pressure overload. T4 (synthetic thyroxine) treatment of MH mothers during their pregnancy, prevented the reduction in CM number in their progeny and the adverse response to disease stress.


Subject(s)
Heart Diseases , Hypothyroidism , Pregnancy , Female , Mice , Animals , Myocytes, Cardiac/metabolism , Heart Diseases/pathology , Hypertrophy/metabolism , Hypertrophy/pathology , Hypothyroidism/complications , Hypothyroidism/metabolism , Hypothyroidism/pathology , Bone Morphogenetic Proteins/metabolism , Cell Proliferation , Cardiomegaly/metabolism
3.
Circ Res ; 132(6): 723-740, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36799218

ABSTRACT

BACKGROUND: A recent study suggests that systemic hypoxemia in adult male mice can induce cardiac myocytes to proliferate. The goal of the present experiments was to confirm these results, provide new insights on the mechanisms that induce adult cardiomyocyte cell cycle reentry, and to determine if hypoxemia also induces cardiomyocyte proliferation in female mice. METHODS: EdU-containing mini pumps were implanted in 3-month-old, male and female C57BL/6 mice. Mice were placed in a hypoxia chamber, and the oxygen was lowered by 1% every day for 14 days to reach 7% oxygen. The animals remained in 7% oxygen for 2 weeks before terminal studies. Myocyte proliferation was also studied with a mosaic analysis with double markers mouse model. RESULTS: Hypoxia induced cardiac hypertrophy in both left ventricular (LV) and right ventricular (RV) myocytes, with LV myocytes lengthening and RV myocytes widening and lengthening. Hypoxia induced an increase (0.01±0.01% in normoxia to 0.11±0.09% in hypoxia) in the number of EdU+ RV cardiomyocytes, with no effect on LV myocytes in male C57BL/6 mice. Similar results were observed in female mice. Furthermore, in mosaic analysis with double markers mice, hypoxia induced a significant increase in RV myocyte proliferation (0.03±0.03% in normoxia to 0.32±0.15% in hypoxia of RFP+ myocytes), with no significant change in LV myocyte proliferation. RNA sequencing showed upregulation of mitotic cell cycle genes and a downregulation of Cullin genes, which promote the G1 to S phase transition in hypoxic mice. There was significant proliferation of nonmyocytes and mild cardiac fibrosis in hypoxic mice that did not disrupt cardiac function. Male and female mice exhibited similar gene expression following hypoxia. CONCLUSIONS: Systemic hypoxia induces a global hypertrophic stress response that was associated with increased RV proliferation, and while LV myocytes did not show increased proliferation, our results minimally confirm previous reports that hypoxia can induce cardiomyocyte cell cycle activity in vivo.


Subject(s)
Hypoxia , Myocytes, Cardiac , Mice , Male , Female , Animals , Myocytes, Cardiac/metabolism , Mice, Inbred C57BL , Hypoxia/complications , Hypoxia/metabolism , Cell Proliferation , Oxygen/metabolism , Hypertrophy/complications , Hypertrophy/metabolism
4.
Am J Physiol Heart Circ Physiol ; 324(4): H443-H460, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36763506

ABSTRACT

Heart failure (HF) with preserved ejection fraction (HFpEF) is defined as HF with an ejection fraction (EF) ≥ 50% and elevated cardiac diastolic filling pressures. The underlying causes of HFpEF are multifactorial and not well-defined. A transgenic mouse with low levels of cardiomyocyte (CM)-specific inducible Cavß2a expression (ß2a-Tg mice) showed increased cytosolic CM Ca2+, and modest levels of CM hypertrophy, and fibrosis. This study aimed to determine if ß2a-Tg mice develop an HFpEF phenotype when challenged with two additional stressors, high-fat diet (HFD) and Nω-nitro-l-arginine methyl ester (l-NAME, LN). Four-month-old wild-type (WT) and ß2a-Tg mice were given either normal chow (WT-N, ß2a-N) or HFD and/or l-NAME (WT-HFD, WT-LN, WT-HFD-LN, ß2a-HFD, ß2a-LN, and ß2a-HFD-LN). Some animals were treated with the histone deacetylase (HDAC) (hypertrophy regulators) inhibitor suberoylanilide hydroxamic acid (SAHA) (ß2a-HFD-LN-SAHA). Echocardiography was performed monthly. After 4 mo of treatment, terminal studies were performed including invasive hemodynamics and organs weight measurements. Cardiac tissue was collected. Four months of HFD plus l-NAME treatment did not induce a profound HFpEF phenotype in FVB WT mice. ß2a-HFD-LN (3-Hit) mice developed features of HFpEF, including increased atrial natriuretic peptide (ANP) levels, preserved EF, diastolic dysfunction, robust CM hypertrophy, increased M2-macrophage population, and myocardial fibrosis. SAHA reduced the HFpEF phenotype in the 3-Hit mouse model, by attenuating these effects. The 3-Hit mouse model induced a reliable HFpEF phenotype with CM hypertrophy, cardiac fibrosis, and increased M2-macrophage population. This model could be used for identifying and preclinical testing of novel therapeutic strategies.NEW & NOTEWORTHY Our study shows that three independent pathological stressors (increased Ca2+ influx, high-fat diet, and l-NAME) together produce a profound HFpEF phenotype. The primary mechanisms include HDAC-dependent-CM hypertrophy, necrosis, increased M2-macrophage population, fibroblast activation, and myocardial fibrosis. A role for HDAC activation in the HFpEF phenotype was shown in studies with SAHA treatment, which prevented the severe HFpEF phenotype. This "3-Hit" mouse model could be helpful in identifying novel therapeutic strategies to treat HFpEF.


Subject(s)
Cardiomyopathies , Heart Failure , Mice , Animals , Heart Failure/genetics , Heart Failure/drug therapy , Stroke Volume/physiology , NG-Nitroarginine Methyl Ester/pharmacology , Mice, Transgenic , Fibrosis , Phenotype , Hypertrophy
5.
Am J Physiol Heart Circ Physiol ; 323(4): H797-H817, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36053749

ABSTRACT

Approximately 50% of all heart failure (HF) diagnoses can be classified as HF with preserved ejection fraction (HFpEF). HFpEF is more prevalent in females compared with males, but the underlying mechanisms are unknown. We previously showed that pressure overload (PO) in male felines induces a cardiopulmonary phenotype with essential features of human HFpEF. The goal of this study was to determine if slow progressive PO induces distinct cardiopulmonary phenotypes in females and males in the absence of other pathological stressors. Female and male felines underwent aortic constriction (banding) or sham surgery after baseline echocardiography, pulmonary function testing, and blood sampling. These assessments were repeated at 2 and 4 mo postsurgery to document the effects of slow progressive pressure overload. At 4 mo, invasive hemodynamic studies were also performed. Left ventricle (LV) tissue was collected for histology, myofibril mechanics, extracellular matrix (ECM) mass spectrometry, and single-nucleus RNA sequencing (snRNAseq). The induced pressure overload (PO) was not different between sexes. PO also induced comparable changes in LV wall thickness and myocyte cross-sectional area in both sexes. Both sexes had preserved ejection fraction, but males had a slightly more robust phenotype in hemodynamic and pulmonary parameters. There was no difference in LV fibrosis and ECM composition between banded male and female animals. LV snRNAseq revealed changes in gene programs of individual cell types unique to males and females after PO. Based on these results, both sexes develop cardiopulmonary dysfunction but the phenotype is somewhat less advanced in females.NEW & NOTEWORTHY We performed a comprehensive assessment to evaluate the effects of slow progressive pressure overload on cardiopulmonary function in a large animal model of heart failure with preserved ejection fraction (HFpEF) in males and females. Functional and structural assessments were performed at the organ, tissue, cellular, protein, and transcriptional levels. This is the first study to compare snRNAseq and ECM mass spectrometry of HFpEF myocardium from males and females. The results broaden our understanding of the pathophysiological response of both sexes to pressure overload. Both sexes developed a robust cardiopulmonary phenotype, but the phenotype was equal or a bit less robust in females.


Subject(s)
Heart Failure , Animals , Cats , Disease Models, Animal , Female , Heart Ventricles , Humans , Male , Stroke Volume/physiology , Ventricular Function, Left/physiology
6.
Am J Physiol Heart Circ Physiol ; 321(6): H1014-H1029, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34623184

ABSTRACT

Heart failure is the one of the leading causes of death in the United States. Heart failure is a complex syndrome caused by numerous diseases, including severe myocardial infarction (MI). MI occurs after an occlusion of a cardiac artery causing downstream ischemia. MI is followed by cardiac remodeling involving extensive remodeling and fibrosis, which, if the original insult is severe or prolonged, can ultimately progress into heart failure. There is no "cure" for heart failure because therapies to regenerate dead tissue are not yet available. Previous studies have shown that in both post-MI and post-ischemia-reperfusion (I/R) models of heart failure, administration of cortical bone stem cell (CBSC) treatment leads to a reduction in scar size and improved cardiac function. Our first study investigated the ability of mouse CBSC-derived exosomes (mCBSC-dEXO) to recapitulate mouse CBSCs (mCBSC) therapeutic effects in a 24-h post-I/R model. This study showed that injection of mCBSCs and mCBSC-dEXOs into the ischemic region of an infarct had a protective effect against I/R injury. mCBSC-dEXOs recapitulated the effects of CBSC treatment post-I/R, indicating exosomes are partly responsible for CBSC's beneficial effects. To examine if exosomes decrease fibrotic activation, adult rat ventricular fibroblasts (ARVFs) and adult human cardiac fibroblasts (NHCFs) were treated with transforming growth factor ß (TGFß) to activate fibrotic signaling before treatment with mCBSC- and human CBSC (hCBSC)-dEXOs. hCBSC-dEXOs caused a 100-fold decrease in human fibroblast activation. To further understand the signaling mechanisms regulating the protective decrease in fibrosis, we performed RNA sequencing on the NHCFs after hCBSC-dEXO treatment. The group treated with both TGFß and exosomes showed a decrease in small nucleolar RNA (snoRNA), known to be involved with ribosome stability.NEW & NOTEWORTHY Our work is noteworthy due to the identification of factors within stem cell-derived exosomes (dEXOs) that alter fibroblast activation through the hereto-unknown mechanism of decreasing small nucleolar RNA (snoRNA) signaling within cardiac fibroblasts. The study also shows that the injection of stem cells or a stem-cell-derived exosome therapy at the onset of reperfusion elicits cardioprotection, emphasizing the importance of early treatment in the post-ischemia-reperfusion (I/R) wounded heart.


Subject(s)
Cortical Bone/cytology , Exosomes/transplantation , Fibroblasts/pathology , Myocardial Infarction/surgery , Myocardial Reperfusion Injury/surgery , Myocardium/pathology , Stem Cell Transplantation , Ventricular Remodeling , Animals , Cells, Cultured , Disease Models, Animal , Exosomes/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibrosis , Humans , Male , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocardium/metabolism , RNA, Small Nucleolar/genetics , RNA, Small Nucleolar/metabolism , Rats , Signal Transduction , Transforming Growth Factor beta/pharmacology
7.
JACC Basic Transl Sci ; 6(8): 650-672, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34466752

ABSTRACT

In this study the authors used systems biology to define progressive changes in metabolism and transcription in a large animal model of heart failure with preserved ejection fraction (HFpEF). Transcriptomic analysis of cardiac tissue, 1-month post-banding, revealed loss of electron transport chain components, and this was supported by changes in metabolism and mitochondrial function, altogether signifying alterations in oxidative metabolism. Established HFpEF, 4 months post-banding, resulted in changes in intermediary metabolism with normalized mitochondrial function. Mitochondrial dysfunction and energetic deficiencies were noted in skeletal muscle at early and late phases of disease, suggesting cardiac-derived signaling contributes to peripheral tissue maladaptation in HFpEF. Collectively, these results provide insights into the cellular biology underlying HFpEF progression.

8.
Am J Physiol Heart Circ Physiol ; 321(4): H684-H701, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34415185

ABSTRACT

Acute damage to the heart, as in the case of myocardial infarction (MI), triggers a robust inflammatory response to the sterile injury that is part of a complex and highly organized wound-healing process. Cortical bone stem cell (CBSC) therapy after MI has been shown to reduce adverse structural and functional remodeling of the heart after MI in both mouse and swine models. The basis for these CBSC treatment effects on wound healing are unknown. The present experiments show that CBSCs secrete paracrine factors known to have immunomodulatory properties, most notably macrophage colony-stimulating factor (M-CSF) and transforming growth factor-ß, but not IL-4. CBSC therapy increased the number of galectin-3+ macrophages, CD4+ T cells, and fibroblasts in the heart while decreasing apoptosis in an in vivo swine model of MI. Macrophages treated with CBSC medium in vitro polarized to a proreparative phenotype are characterized by increased CD206 expression, increased efferocytic ability, increased IL-10, TGF-ß, and IL-1RA secretion, and increased mitochondrial respiration. Next generation sequencing revealed a transcriptome significantly different from M2a or M2c macrophage phenotypes. Paracrine factors from CBSC-treated macrophages increased proliferation, decreased α-smooth muscle actin expression, and decreased contraction by fibroblasts in vitro. These data support the idea that CBSCs are modulating the immune response to MI to favor cardiac repair through a unique macrophage polarization that ultimately reduces cell death and alters fibroblast populations that may result in smaller scar size and preserved cardiac geometry and function.NEW & NOTEWORTHY Cortical bone stem cell (CBSC) therapy after myocardial infarction alters the inflammatory response to cardiac injury. We found that cortical bone stem cell therapy induces a unique macrophage phenotype in vitro and can modulate macrophage/fibroblast cross talk.


Subject(s)
Inflammation Mediators/metabolism , Macrophage Activation , Macrophages/metabolism , Myocardial Infarction/surgery , Myocardium/metabolism , Paracrine Communication , Stem Cell Transplantation , Stem Cells/metabolism , Wound Healing , Animals , Apoptosis , Cells, Cultured , Cortical Bone/cytology , Disease Models, Animal , Female , Fibroblasts/immunology , Fibroblasts/metabolism , Fibrosis , Humans , Macrophages/immunology , Mice, Inbred C57BL , Myocardial Infarction/genetics , Myocardial Infarction/immunology , Myocardial Infarction/metabolism , Myocardium/immunology , Phenotype , Signal Transduction , Swine , Swine, Miniature , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transcriptome
9.
Circ Res ; 128(1): 92-114, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33092464

ABSTRACT

RATIONALE: Ca2+-induced Ca2+ release (CICR) in normal hearts requires close approximation of L-type calcium channels (LTCCs) within the transverse tubules (T-tubules) and RyR (ryanodine receptors) within the junctional sarcoplasmic reticulum. CICR is disrupted in cardiac hypertrophy and heart failure, which is associated with loss of T-tubules and disruption of cardiac dyads. In these conditions, LTCCs are redistributed from the T-tubules to disrupt CICR. The molecular mechanism responsible for LTCCs recruitment to and from the T-tubules is not well known. JPH (junctophilin) 2 enables close association between T-tubules and the junctional sarcoplasmic reticulum to ensure efficient CICR. JPH2 has a so-called joining region that is located near domains that interact with T-tubular plasma membrane, where LTCCs are housed. The idea that this joining region directly interacts with LTCCs and contributes to LTCC recruitment to T-tubules is unknown. OBJECTIVE: To determine if the joining region in JPH2 recruits LTCCs to T-tubules through direct molecular interaction in cardiomyocytes to enable efficient CICR. METHODS AND RESULTS: Modified abundance of JPH2 and redistribution of LTCC were studied in left ventricular hypertrophy in vivo and in cultured adult feline and rat ventricular myocytes. Protein-protein interaction studies showed that the joining region in JPH2 interacts with LTCC-α1C subunit and causes LTCCs distribution to the dyads, where they colocalize with RyRs. A JPH2 with induced mutations in the joining region (mutPG1JPH2) caused T-tubule remodeling and dyad loss, showing that an interaction between LTCC and JPH2 is crucial for T-tubule stabilization. mutPG1JPH2 caused asynchronous Ca2+-release with impaired excitation-contraction coupling after ß-adrenergic stimulation. The disturbed Ca2+ regulation in mutPG1JPH2 overexpressing myocytes caused calcium/calmodulin-dependent kinase II activation and altered myocyte bioenergetics. CONCLUSIONS: The interaction between LTCC and the joining region in JPH2 facilitates dyad assembly and maintains normal CICR in cardiomyocytes.


Subject(s)
Calcium Channels, L-Type/metabolism , Calcium Signaling , Calcium/metabolism , Hypertrophy, Left Ventricular/metabolism , Membrane Proteins/metabolism , Muscle Proteins/metabolism , Myocytes, Cardiac/metabolism , Animals , Calcium Channels, L-Type/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cats , Cells, Cultured , Disease Models, Animal , Excitation Contraction Coupling , Humans , Hypertrophy, Left Ventricular/pathology , Hypertrophy, Left Ventricular/physiopathology , Kinetics , Male , Membrane Proteins/genetics , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Muscle Proteins/genetics , Mutation , Myocytes, Cardiac/pathology , Organelle Biogenesis , Protein Binding , Protein Interaction Domains and Motifs , Rats, Sprague-Dawley , Ryanodine Receptor Calcium Release Channel
10.
Channels (Austin) ; 14(1): 231-245, 2020 12.
Article in English | MEDLINE | ID: mdl-32684070

ABSTRACT

Low voltage activated (ICa-LVA) calcium currents including Cav1.3 and T-type calcium current (ICa-T) have not been reported in adult human left ventricular myocytes (HLVMs). We tried to examine their existence and possible correlation with etiology and patient characteristics in a big number of human LVMs isolated from explanted terminally failing (F) hearts, failing hearts with left ventricular assist device (F-LVAD) and nonfailing (NF) human hearts. LVA (ICa-LVA) was determined by subtracting L-type Ca2+ current (ICa-L) recorded with the holding potential of -50 mV from total Ca2+ current recorded with the holding potential of -90 mV or -70 mV. ICa- LVA was further tested with its sensitivity to 100 µM CdCl2 and tetrodotoxin. Three HLVMs (3 of 137 FHLVMs) from 2 (N = 30 hearts) failing human hearts, of which one was idiopathic and the other was due to primary pulmonary hypertension, were found with ICa-LVA. ICa-LVA in one FHLVM was not sensitive to 100 µM CdCl2 while ICa-LVA in another two FHLVMs was not sensitive to tetrodotoxin. It peaked at the voltage of -40~-20 mV and had a time-dependent decay faster than ICa-L but slower than sodium current (INa). ICa-LVA was not found in any HLVMs from NF (75 HLVMs from 17 hearts) or F-LVAD hearts (82 HLVMs from 18 hearts) but a statistically significant correlation could not be established. In conclusion, ICa-LVA was detected in some HLVMs of a small portion of human hearts that happened to be nonischemic failing hearts.


Subject(s)
Calcium Channels, L-Type/metabolism , Calcium Channels, T-Type/metabolism , Calcium Channels/metabolism , Heart Failure/metabolism , Heart Ventricles/cytology , Muscle Cells/metabolism , Myocytes, Cardiac/metabolism , Adult , Aged , Calcium Channels, L-Type/genetics , Calcium Channels, T-Type/genetics , Female , Heart Failure/genetics , Heart-Assist Devices , Humans , Male , Middle Aged , Young Adult
11.
Sci Transl Med ; 12(525)2020 01 08.
Article in English | MEDLINE | ID: mdl-31915304

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) is a major health problem without effective therapies. This study assessed the effects of histone deacetylase (HDAC) inhibition on cardiopulmonary structure, function, and metabolism in a large mammalian model of pressure overload recapitulating features of diastolic dysfunction common to human HFpEF. Male domestic short-hair felines (n = 31, aged 2 months) underwent a sham procedure (n = 10) or loose aortic banding (n = 21), resulting in slow-progressive pressure overload. Two months after banding, animals were treated daily with suberoylanilide hydroxamic acid (b + SAHA, 10 mg/kg, n = 8), a Food and Drug Administration-approved pan-HDAC inhibitor, or vehicle (b + veh, n = 8) for 2 months. Echocardiography at 4 months after banding revealed that b + SAHA animals had significantly reduced left ventricular hypertrophy (LVH) (P < 0.0001) and left atrium size (P < 0.0001) versus b + veh animals. Left ventricular (LV) end-diastolic pressure and mean pulmonary arterial pressure were significantly reduced in b + SAHA (P < 0.01) versus b + veh. SAHA increased myofibril relaxation ex vivo, which correlated with in vivo improvements of LV relaxation. Furthermore, SAHA treatment preserved lung structure, compliance, blood oxygenation, and reduced perivascular fluid cuffs around extra-alveolar vessels, suggesting attenuated alveolar capillary stress failure. Acetylation proteomics revealed that SAHA altered lysine acetylation of mitochondrial metabolic enzymes. These results suggest that acetylation defects in hypertrophic stress can be reversed by HDAC inhibitors, with implications for improving cardiac structure and function in patients.


Subject(s)
Diastole , Heart Failure/drug therapy , Heart Failure/physiopathology , Histone Deacetylase Inhibitors/therapeutic use , Animals , Blood Pressure/drug effects , Cats , Diastole/drug effects , Disease Models, Animal , Heart Ventricles/drug effects , Heart Ventricles/physiopathology , Histone Deacetylase Inhibitors/pharmacology , Lung/drug effects , Lung/pathology , Lung/physiopathology , Male , Mitochondria/drug effects , Mitochondria/metabolism , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Myofibrils/drug effects , Myofibrils/metabolism , Phenotype , Protein Processing, Post-Translational/drug effects , Stroke Volume/drug effects , Vorinostat/pharmacology , Vorinostat/therapeutic use
12.
Circ Heart Fail ; 13(1): e006426, 2020 01.
Article in English | MEDLINE | ID: mdl-31916447

ABSTRACT

BACKGROUND: The failing right ventricle (RV) does not respond like the left ventricle (LV) to guideline-directed medical therapy of heart failure, perhaps due to interventricular differences in their molecular pathophysiology. METHODS: Using the canine tachypacing-induced biventricular heart failure (HF) model, we tested the hypothesis that interventricular differences in microRNAs (miRs) expression distinguish failing RV from failing LV. RESULTS: Severe RV dysfunction was indicated by elevated end-diastolic pressure (11.3±2.5 versus 5.7±2.0 mm Hg; P<0.0001) and diminished fractional area change (24.9±7.1 versus 48.0±3.6%; P<0.0001) relative to prepacing baselines. Microarray analysis of ventricular tissue revealed that miR-21 and miR-221, 2 activators of profibrotic and proliferative processes, increased the most, at 4- and 2-fold, respectively, in RV-HF versus RV-Control. Neither miR-21 or miR-221 was statistically significantly different in LV-HF versus LV-Control. These changes were accompanied by more extensive fibrosis in RV-HF than LV-HF. To test whether miR-21 and miR-221 upregulation is specific to RV cellular response to mechanical and hormonal stimuli associated with HF, we subjected fibroblasts and cardiomyocytes isolated from normal canine RV and LV to cyclic overstretch and aldosterone. These 2 stressors markedly upregulated miR-21 and miR-221 in RV fibroblasts but not in LV fibroblasts nor cardiomyocytes of either ventricle. Furthermore, miR-21/221 knockdown significantly attenuated RV but not LV fibroblast proliferation. CONCLUSIONS: We identified a novel, biological difference between RV and LV fibroblasts that might underlie distinctions in pathological remodeling of the RV in biventricular HF.


Subject(s)
Fibroblasts/metabolism , Heart Failure/metabolism , Heart Ventricles/metabolism , MicroRNAs/metabolism , Ventricular Dysfunction, Right/metabolism , Animals , Dogs , Heart Failure/physiopathology , Heart Ventricles/physiopathology , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/physiopathology , Myocytes, Cardiac/metabolism , Up-Regulation , Ventricular Dysfunction, Right/physiopathology , Ventricular Function, Left/physiology
13.
Am J Physiol Heart Circ Physiol ; 317(4): H820-H829, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31441690

ABSTRACT

Ischemic heart diseases such as myocardial infarction (MI) are the largest contributors to cardiovascular disease worldwide. The resulting cardiac cell death impairs function of the heart and can lead to heart failure and death. Reperfusion of the ischemic tissue is necessary but causes damage to the surrounding tissue by reperfusion injury. Cortical bone stem cells (CBSCs) have been shown to increase pump function and decrease scar size in a large animal swine model of MI. To investigate the potential mechanism for these changes, we hypothesized that CBSCs were altering cardiac cell death after reperfusion. To test this, we performed TUNEL staining for apoptosis and antibody-based immunohistochemistry on tissue from Göttingen miniswine that underwent 90 min of lateral anterior descending coronary artery ischemia followed by 3 or 7 days of reperfusion to assess changes in cardiomyocyte and noncardiomyocyte cell death. Our findings indicate that although myocyte apoptosis is present 3 days after ischemia and is lower in CBSC-treated animals, myocyte apoptosis accounts for <2% of all apoptosis in the reperfused heart. In addition, nonmyocyte apoptosis trends toward decreased in CBSC-treated hearts, and although CBSCs increase macrophage and T-cell populations in the infarct region, the occurrence of apoptosis in CD45+ cells in the myocardium is not different between groups. From these data, we conclude that CBSCs may be influencing cardiomyocyte and noncardiomyocyte cell death and immune cell recruitment dynamics in the heart after MI, and these changes may account for some of the beneficial effects conferred by CBSC treatment.NEW & NOTEWORTHY The following research explores aspects of cell death and inflammation that have not been previously studied in a large animal model. In addition, apoptosis and cell death have not been studied in the context of cell therapy and myocardial infarction. In this article, we describe interactions between cell therapy and inflammation and the potential implications for cardiac wound healing.


Subject(s)
Apoptosis , Myocardial Infarction/surgery , Myocardial Reperfusion Injury/surgery , Myocytes, Cardiac/pathology , Stem Cell Transplantation , Stem Cells , Tibia/cytology , Animals , Cells, Cultured , Disease Models, Animal , Female , Hematopoietic Stem Cells/immunology , Hematopoietic Stem Cells/metabolism , Leukocyte Common Antigens/metabolism , Macrophages/immunology , Macrophages/metabolism , Male , Myocardial Infarction/immunology , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/immunology , Swine , Swine, Miniature , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Time Factors
14.
Sci Rep ; 7(1): 16587, 2017 11 29.
Article in English | MEDLINE | ID: mdl-29185443

ABSTRACT

Heart Failure with preserved Ejection Fraction (HFpEF) represents a major public health problem. The causative mechanisms are multifactorial and there are no effective treatments for HFpEF, partially attributable to the lack of well-established HFpEF animal models. We established a feline HFpEF model induced by slow-progressive pressure overload. Male domestic short hair cats (n = 20), underwent either sham procedures (n = 8) or aortic constriction (n = 12) with a customized pre-shaped band. Pulmonary function, gas exchange, and invasive hemodynamics were measured at 4-months post-banding. In banded cats, echocardiography at 4-months revealed concentric left ventricular (LV) hypertrophy, left atrial (LA) enlargement and dysfunction, and LV diastolic dysfunction with preserved systolic function, which subsequently led to elevated LV end-diastolic pressures and pulmonary hypertension. Furthermore, LV diastolic dysfunction was associated with increased LV fibrosis, cardiomyocyte hypertrophy, elevated NT-proBNP plasma levels, fluid and protein loss in pulmonary interstitium, impaired lung expansion, and alveolar-capillary membrane thickening. We report for the first time in HFpEF perivascular fluid cuff formation around extra-alveolar vessels with decreased respiratory compliance. Ultimately, these cardiopulmonary abnormalities resulted in impaired oxygenation. Our findings support the idea that this model can be used for testing novel therapeutic strategies to treat the ever growing HFpEF population.


Subject(s)
Hypertension, Pulmonary , Hypertrophy, Left Ventricular , Pulmonary Alveoli , Ventricular Dysfunction, Left , Animals , Cats , Disease Models, Animal , Female , Fibrosis , Hypertension, Pulmonary/blood , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/physiopathology , Hypertrophy, Left Ventricular/blood , Hypertrophy, Left Ventricular/pathology , Hypertrophy, Left Ventricular/physiopathology , Male , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Pulmonary Alveoli/blood supply , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/pathology , Pulmonary Alveoli/physiopathology , Stroke Volume , Ventricular Dysfunction, Left/blood , Ventricular Dysfunction, Left/pathology , Ventricular Dysfunction, Left/physiopathology
15.
Circ Res ; 121(11): 1263-1278, 2017 Nov 10.
Article in English | MEDLINE | ID: mdl-28912121

ABSTRACT

RATIONALE: Cortical bone stem cells (CBSCs) have been shown to reduce ventricular remodeling and improve cardiac function in a murine myocardial infarction (MI) model. These effects were superior to other stem cell types that have been used in recent early-stage clinical trials. However, CBSC efficacy has not been tested in a preclinical large animal model using approaches that could be applied to patients. OBJECTIVE: To determine whether post-MI transendocardial injection of allogeneic CBSCs reduces pathological structural and functional remodeling and prevents the development of heart failure in a swine MI model. METHODS AND RESULTS: Female Göttingen swine underwent left anterior descending coronary artery occlusion, followed by reperfusion (ischemia-reperfusion MI). Animals received, in a randomized, blinded manner, 1:1 ratio, CBSCs (n=9; 2×107 cells total) or placebo (vehicle; n=9) through NOGA-guided transendocardial injections. 5-ethynyl-2'deoxyuridine (EdU)-a thymidine analog-containing minipumps were inserted at the time of MI induction. At 72 hours (n=8), initial injury and cell retention were assessed. At 3 months post-MI, cardiac structure and function were evaluated by serial echocardiography and terminal invasive hemodynamics. CBSCs were present in the MI border zone and proliferating at 72 hours post-MI but had no effect on initial cardiac injury or structure. At 3 months, CBSC-treated hearts had significantly reduced scar size, smaller myocytes, and increased myocyte nuclear density. Noninvasive echocardiographic measurements showed that left ventricular volumes and ejection fraction were significantly more preserved in CBSC-treated hearts, and invasive hemodynamic measurements documented improved cardiac structure and functional reserve. The number of EdU+ cardiac myocytes was increased in CBSC- versus vehicle- treated animals. CONCLUSIONS: CBSC administration into the MI border zone reduces pathological cardiac structural and functional remodeling and improves left ventricular functional reserve. These effects reduce those processes that can lead to heart failure with reduced ejection fraction.


Subject(s)
Cortical Bone/cytology , Myocardial Infarction/surgery , Myocardial Reperfusion Injury/surgery , Myocardium/pathology , Stem Cells/physiology , Ventricular Function, Left , Ventricular Remodeling , Animals , Apoptosis , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/prevention & control , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Female , Hemodynamics , Myocardial Contraction , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Phenotype , Stroke Volume , Sus scrofa , Time Factors
16.
Circ Res ; 121(2): 125-136, 2017 Jul 07.
Article in English | MEDLINE | ID: mdl-28592415

ABSTRACT

RATIONALE: Pathological increases in cardiac afterload result in myocyte hypertrophy with changes in myocyte electrical and mechanical phenotype. Remodeling of contractile and signaling Ca2+ occurs in pathological hypertrophy and is central to myocyte remodeling. STIM1 (stromal interaction molecule 1) regulates Ca2+ signaling in many cell types by sensing low endoplasmic reticular Ca2+ levels and then coupling to plasma membrane Orai channels to induce a Ca2+ influx pathway. Previous reports suggest that STIM1 may play a role in cardiac hypertrophy, but its role in electrical and mechanical phenotypic alterations is not well understood. OBJECTIVE: To define the contributions of STIM1-mediated Ca2+ influx on electrical and mechanical properties of normal and diseased myocytes, and to determine whether Orai channels are obligatory partners for STIM1 in these processes using a clinically relevant large animal model of hypertrophy. METHODS AND RESULTS: Cardiac hypertrophy was induced by slow progressive pressure overload in adult cats. Hypertrophied myocytes had increased STIM1 expression and activity, which correlated with altered Ca2+-handling and action potential (AP) prolongation. Exposure of hypertrophied myocytes to the Orai channel blocker BTP2 caused a reduction of AP duration and reduced diastolic Ca2+ spark rate. BTP2 had no effect on normal myocytes. Forced expression of STIM1 in cultured adult feline ventricular myocytes increased diastolic spark rate and prolonged AP duration. STIM1 expression produced an increase in the amount of Ca2+ stored within the sarcoplasmic reticulum and activated Ca2+/calmodulin-dependent protein kinase II. STIM1 expression also increased spark rates and induced spontaneous APs. STIM1 effects were eliminated by either BTP2 or by coexpression of a dominant negative Orai construct. CONCLUSIONS: STIM1 can associate with Orai in cardiac myocytes to produce a Ca2+ influx pathway that can prolong the AP duration and load the sarcoplasmic reticulum and likely contributes to the altered electromechanical properties of the hypertrophied heart.


Subject(s)
Cardiomegaly/metabolism , Cardiomegaly/physiopathology , Myocardial Contraction/physiology , Neoplasm Proteins/biosynthesis , Stromal Interaction Molecule 1/biosynthesis , Action Potentials/physiology , Animals , Cats , Cells, Cultured , Male
17.
Am J Physiol Heart Circ Physiol ; 313(3): H620-H630, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28646025

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is one of the most common genetic cardiac diseases and among the leading causes of sudden cardiac death (SCD) in the young. The cellular mechanisms leading to SCD in HCM are not well known. Prolongation of the action potential (AP) duration (APD) is a common feature predisposing hypertrophied hearts to SCD. Previous studies have explored the roles of inward Na+ and Ca2+ in the development of HCM, but the role of repolarizing K+ currents has not been defined. The objective of this study was to characterize the arrhythmogenic phenotype and cellular electrophysiological properties of mice with HCM, induced by myosin-binding protein C (MyBPC) knockout (KO), and to test the hypothesis that remodeling of repolarizing K+ currents causes APD prolongation in MyBPC KO myocytes. We demonstrated that MyBPC KO mice developed severe hypertrophy and cardiac dysfunction compared with wild-type (WT) control mice. Telemetric electrocardiographic recordings of awake mice revealed prolongation of the corrected QT interval in the KO compared with WT control mice, with overt ventricular arrhythmias. Whole cell current- and voltage-clamp experiments comparing KO with WT mice demonstrated ventricular myocyte hypertrophy, AP prolongation, and decreased repolarizing K+ currents. Quantitative RT-PCR analysis revealed decreased mRNA levels of several key K+ channel subunits. In conclusion, decrease in repolarizing K+ currents in MyBPC KO ventricular myocytes contributes to AP and corrected QT interval prolongation and could account for the arrhythmia susceptibility.NEW & NOTEWORTHY Ventricular myocytes isolated from the myosin-binding protein C knockout hypertrophic cardiomyopathy mouse model demonstrate decreased repolarizing K+ currents and action potential and QT interval prolongation, linking cellular repolarization abnormalities with arrhythmia susceptibility and the risk for sudden cardiac death in hypertrophic cardiomyopathy.


Subject(s)
Carrier Proteins/metabolism , Heart Rate , Myocytes, Cardiac/metabolism , Potassium Channels/metabolism , Potassium/metabolism , Tachycardia, Ventricular/metabolism , Ventricular Premature Complexes/metabolism , Action Potentials , Animals , Cardiomegaly/genetics , Cardiomegaly/metabolism , Cardiomegaly/pathology , Carrier Proteins/genetics , Disease Models, Animal , Electrocardiography, Ambulatory , Fibrosis , Genetic Predisposition to Disease , Kinetics , Male , Mice, 129 Strain , Mice, Knockout , Myocardial Contraction , Myocytes, Cardiac/pathology , Patch-Clamp Techniques , Phenotype , Potassium Channels/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/pathology , Tachycardia, Ventricular/physiopathology , Telemetry , Ventricular Premature Complexes/genetics , Ventricular Premature Complexes/pathology , Ventricular Premature Complexes/physiopathology
18.
Cardiovasc Res ; 113(7): 749-759, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28402392

ABSTRACT

AIMS: L-type Ca2+ channels (LTCCs) in adult cardiomyocytes are localized to t-tubules where they initiate excitation-contraction coupling. Our recent work has shown that a subpopulation of LTCCs found at the surface sarcolemma in caveolae of adult feline cardiomyocytes can also generate a Ca2+ microdomain that activates nuclear factor of activated T-cells signaling and cardiac hypertrophy, although the relevance of this paradigm to hypertrophy regulation in vivo has not been examined. METHODS AND RESULTS: Here we generated heart-specific transgenic mice with a putative caveolae-targeted LTCC activator protein that was ineffective in initiating or enhancing cardiac hypertrophy in vivo. We also generated transgenic mice with cardiac-specific overexpression of a putative caveolae-targeted inhibitor of LTCCs, and while this protein inhibited caveolae-localized LTCCs without effects on global Ca2+ handling, it similarly had no effect on cardiac hypertrophy in vivo. Cardiac hypertrophy was elicited by pressure overload for 2 or 12 weeks or with neurohumoral agonist infusion. Caveolae-specific LTCC activator or inhibitor transgenic mice showed no greater change in nuclear factor of activated T-cells activity after 2 weeks of pressure overload stimulation compared with control mice. CONCLUSION: Our results indicate that LTCCs in the caveolae microdomain do not affect cardiac function and are not necessary for the regulation of hypertrophic signaling in the adult mouse heart.


Subject(s)
Calcium Channels, L-Type/metabolism , Calcium Signaling , Caveolae/metabolism , Hypertrophy, Left Ventricular/metabolism , Myocardium/metabolism , Ventricular Dysfunction, Left/metabolism , Ventricular Function, Left , Animals , Calcium Channels, L-Type/genetics , Cats , Disease Models, Animal , Female , Genetic Predisposition to Disease , HEK293 Cells , Humans , Hypertrophy, Left Ventricular/genetics , Hypertrophy, Left Ventricular/physiopathology , Male , Mice, Transgenic , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism , NFATC Transcription Factors/metabolism , Phenotype , Time Factors , Transfection , Ventricular Dysfunction, Left/genetics , Ventricular Dysfunction, Left/physiopathology
19.
J Trauma Acute Care Surg ; 82(2): 243-251, 2017 02.
Article in English | MEDLINE | ID: mdl-28107308

ABSTRACT

BACKGROUND: Hemorrhagic shock and pneumonectomy causes an acute increase in pulmonary vascular resistance (PVR). The increase in PVR and right ventricular (RV) afterload leads to acute RV failure, thus reducing left ventricular (LV) preload and output. Inhaled nitric oxide (iNO) lowers PVR by relaxing pulmonary arterial smooth muscle without remarkable systemic vascular effects. We hypothesized that with hemorrhagic shock and pneumonectomy, iNO can be used to decrease PVR and mitigate right heart failure. METHODS: A hemorrhagic shock and pneumonectomy model was developed using sheep. Sheep received lung protective ventilatory support and were instrumented to serially obtain measurements of hemodynamics, gas exchange, and blood chemistry. Heart function was assessed with echocardiography. After randomization to study gas of iNO 20 ppm (n = 9) or nitrogen as placebo (n = 9), baseline measurements were obtained. Hemorrhagic shock was initiated by exsanguination to a target of 50% of the baseline mean arterial pressure. The resuscitation phase was initiated, consisting of simultaneous left pulmonary hilum ligation, via median sternotomy, infusion of autologous blood and initiation of study gas. Animals were monitored for 4 hours. RESULTS: All animals had an initial increase in PVR. PVR remained elevated with placebo; with iNO, PVR decreased to baseline. Echo showed improved RV function in the iNO group while it remained impaired in the placebo group. After an initial increase in shunt and lactate and decrease in SvO2, all returned toward baseline in the iNO group but remained abnormal in the placebo group. CONCLUSION: These data indicate that by decreasing PVR, iNO decreased RV afterload, preserved RV and LV function, and tissue oxygenation in this hemorrhagic shock and pneumonectomy model. This suggests that iNO may be a useful clinical adjunct to mitigate right heart failure and improve survival when trauma pneumonectomy is required.


Subject(s)
Heart Failure/prevention & control , Nitric Oxide/pharmacology , Pneumonectomy , Pulmonary Artery/drug effects , Shock, Hemorrhagic/physiopathology , Ventricular Dysfunction, Right/prevention & control , Administration, Inhalation , Animals , Blood Chemical Analysis , Blood Transfusion, Autologous , Disease Models, Animal , Echocardiography , Hemodynamics , Nitric Oxide/administration & dosage , Pulmonary Gas Exchange , Sheep , Sternotomy , Vascular Resistance/drug effects
20.
JACC Basic Transl Sci ; 2(6): 669-683, 2017 Dec.
Article in English | MEDLINE | ID: mdl-30062182

ABSTRACT

Inotropic support is often required to stabilize the hemodynamics of patients with acute decompensated heart failure; while efficacious, it has a history of leading to lethal arrhythmias and/or exacerbating contractile and energetic insufficiencies. Novel therapeutics that can improve contractility independent of beta-adrenergic and protein kinase A-regulated signaling, should be therapeutically beneficial. This study demonstrates that acute protein kinase C-α/ß inhibition, with ruboxistaurin at 3 months' post-myocardial infarction, significantly increases contractility and reduces the end-diastolic/end-systolic volumes, documenting beneficial remodeling. These data suggest that ruboxistaurin represents a potential novel therapeutic for heart failure patients, as a moderate inotrope or therapeutic, which leads to beneficial ventricular remodeling.

SELECTION OF CITATIONS
SEARCH DETAIL
...