Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Front Toxicol ; 6: 1377542, 2024.
Article in English | MEDLINE | ID: mdl-38605940

ABSTRACT

Though the portfolio of medicines that are extending and improving the lives of patients continues to grow, drug discovery and development remains a challenging business on its best day. Safety liabilities are a significant contributor to development attrition where the costliest liabilities to both drug developers and patients emerge in late development or post-marketing. Animal studies are an important and influential contributor to the current drug discovery and development paradigm intending to provide evidence that a novel drug candidate can be used safely and effectively in human volunteers and patients. However, translational gaps-such as toxicity in patients not predicted by animal studies-have prompted efforts to improve their effectiveness, especially in safety assessment. More holistic monitoring and "digitalization" of animal studies has the potential to enrich study outcomes leading to datasets that are more computationally accessible, translationally relevant, replicable, and technically efficient. Continuous monitoring of animal behavior and physiology enables longitudinal assessment of drug effects, detection of effects during the animal's sleep and wake cycles and the opportunity to detect health or welfare events earlier. Automated measures can also mitigate human biases and reduce subjectivity. Reinventing a conservative, standardized, and traditional paradigm like drug safety assessment requires the collaboration and contributions of a broad and multi-disciplinary stakeholder group. In this perspective, we review the current state of the field and discuss opportunities to improve current approaches by more fully leveraging the power of sensor technologies, artificial intelligence (AI), and animal behavior in a home cage environment.

2.
Toxicol Sci ; 198(1): 4-13, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38134427

ABSTRACT

Throughput needs, costs of time and resources, and concerns about the use of animals in hazard and safety assessment studies are fueling a growing interest in adopting new approach methodologies for use in product development and risk assessment. However, current efforts to define "next-generation risk assessment" vary considerably across commercial and regulatory sectors, and an a priori definition of the biological scope of data needed to assess hazards is generally lacking. We propose that the absence of clearly defined questions that can be answered during hazard assessment is the primary barrier to the generation of a paradigm flexible enough to be used across varying product development and approval decision contexts. Herein, we propose a biological questions-based approach (BQBA) for hazard and safety assessment to facilitate fit-for-purpose method selection and more efficient evidence-based decision-making. The key pillars of this novel approach are bioavailability, bioactivity, adversity, and susceptibility. This BQBA is compared with current hazard approaches and is applied in scenarios of varying pathobiological understanding and/or regulatory testing requirements. To further define the paradigm and key questions that allow better prediction and characterization of human health hazard, a multidisciplinary collaboration among stakeholder groups should be initiated.


Subject(s)
Animal Use Alternatives , Risk Assessment , Animals , Humans , Risk Assessment/methods
3.
J Natl Cancer Inst ; 114(11): 1441-1448, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36029241

ABSTRACT

The National Toxicology Program strives to raise awareness of cancer hazards in our environment. Identifying cancer hazards is key to primary prevention, informing public health decision making, and decreasing the global cancer burden. In December 2021, the US congressionally mandated 15th Report on Carcinogens was released, adding 8 new substances to the cumulative report. Chronic infection with Helicobacter pylori is listed as "known to be a human carcinogen." Antimony trioxide and 6 haloacetic acids found as water disinfection by-products-dichloroacetic acid, dibromoacetic acid, bromochloroacetic acid, tribromoacetic acid, bromodichloroacetic acid, chlorodibromoacetic acid-are listed as "reasonably anticipated to be a human carcinogen." A new dashboard provides interactive visualization and interrogation of the 256 listed substances, their uses, and associated cancers. Also, the National Toxicology Program recently published a Cancer Hazard Assessment Report on exposure scenarios associated with circadian disruption, concluding that persistent night shift work can cause breast cancer and certain lighting conditions may cause cancer. As highlighted in these reports and evaluations, we are evolving our approaches to meet contemporary challenges. These approaches include focusing on real-world exposures and advancing our methods to address challenges in cancer hazard assessments (eg, developing more structured approaches to evaluate mechanistic data and incorporating read-across approaches to assess chemicals lacking adequate human or animal cancer data). To promote public health, we provide information on environmental health disparities and disease prevention. Building on these efforts, we aim to continue our contributions to the war on cancer, declared 50 years ago.


Subject(s)
Neoplasms , Animals , Humans , Program Evaluation , Neoplasms/epidemiology , Neoplasms/prevention & control , Dichloroacetic Acid , Carcinogens/toxicity
4.
J Endocr Soc ; 6(9): bvac109, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-37283844

ABSTRACT

Nongenomic effects of estrogen receptor α (ERα) signaling have been described for decades. Several distinct animal models have been generated previously to analyze the nongenomic ERα signaling (eg, membrane-only ER, and ERαC451A). However, the mechanisms and physiological processes resulting solely from nongenomic signaling are still poorly understood. Herein, we describe a novel mouse model for analyzing nongenomic ERα actions named H2NES knock-in (KI). H2NES ERα possesses a nuclear export signal (NES) in the hinge region of ERα protein resulting in exclusive cytoplasmic localization that involves only the nongenomic action but not nuclear genomic actions. We generated H2NESKI mice by homologous recombination method and have characterized the phenotypes. H2NESKI homozygote mice possess almost identical phenotypes with ERα null mice except for the vascular activity on reendothelialization. We conclude that ERα-mediated nongenomic estrogenic signaling alone is insufficient to control most estrogen-mediated endocrine physiological responses; however, there could be some physiological responses that are nongenomic action dominant. H2NESKI mice have been deposited in the repository at Jax (stock no. 032176). These mice should be useful for analyzing nongenomic estrogenic responses and could expand analysis along with other ERα mutant mice lacking membrane-bound ERα. We expect the H2NESKI mouse model to aid our understanding of ERα-mediated nongenomic physiological responses and serve as an in vivo model for evaluating the nongenomic action of various estrogenic agents.

5.
Environ Health Perspect ; 129(9): 95001, 2021 09.
Article in English | MEDLINE | ID: mdl-34558968

ABSTRACT

BACKGROUND: The concept of chemical agents having properties that confer potential hazard called key characteristics (KCs) was first developed to identify carcinogenic hazards. Identification of KCs of cardiovascular (CV) toxicants could facilitate the systematic assessment of CV hazards and understanding of assay and data gaps associated with current approaches. OBJECTIVES: We sought to develop a consensus-based synthesis of scientific evidence on the KCs of chemical and nonchemical agents known to cause CV toxicity along with methods to measure them. METHODS: An expert working group was convened to discuss mechanisms associated with CV toxicity. RESULTS: The group identified 12 KCs of CV toxicants, defined as exogenous agents that adversely interfere with function of the CV system. The KCs were organized into those primarily affecting cardiac tissue (numbers 1-4 below), the vascular system (5-7), or both (8-12), as follows: 1) impairs regulation of cardiac excitability, 2) impairs cardiac contractility and relaxation, 3) induces cardiomyocyte injury and death, 4) induces proliferation of valve stroma, 5) impacts endothelial and vascular function, 6) alters hemostasis, 7) causes dyslipidemia, 8) impairs mitochondrial function, 9) modifies autonomic nervous system activity, 10) induces oxidative stress, 11) causes inflammation, and 12) alters hormone signaling. DISCUSSION: These 12 KCs can be used to help identify pharmaceuticals and environmental pollutants as CV toxicants, as well as to better understand the mechanistic underpinnings of their toxicity. For example, evidence exists that fine particulate matter [PM ≤2.5µm in aerodynamic diameter (PM2.5)] air pollution, arsenic, anthracycline drugs, and other exogenous chemicals possess one or more of the described KCs. In conclusion, the KCs could be used to identify potential CV toxicants and to define a set of test methods to evaluate CV toxicity in a more comprehensive and standardized manner than current approaches. https://doi.org/10.1289/EHP9321.


Subject(s)
Air Pollutants , Air Pollution , Environmental Pollutants , Air Pollutants/analysis , Air Pollution/analysis , Carcinogens , Environmental Pollutants/toxicity , Hazardous Substances/toxicity , Particulate Matter/analysis
6.
Nat Rev Drug Discov ; 20(5): 345-361, 2021 05.
Article in English | MEDLINE | ID: mdl-32913334

ABSTRACT

Organs-on-chips (OoCs), also known as microphysiological systems or 'tissue chips' (the terms are synonymous), have attracted substantial interest in recent years owing to their potential to be informative at multiple stages of the drug discovery and development process. These innovative devices could provide insights into normal human organ function and disease pathophysiology, as well as more accurately predict the safety and efficacy of investigational drugs in humans. Therefore, they are likely to become useful additions to traditional preclinical cell culture methods and in vivo animal studies in the near term, and in some cases replacements for them in the longer term. In the past decade, the OoC field has seen dramatic advances in the sophistication of biology and engineering, in the demonstration of physiological relevance and in the range of applications. These advances have also revealed new challenges and opportunities, and expertise from multiple biomedical and engineering fields will be needed to fully realize the promise of OoCs for fundamental and translational applications. This Review provides a snapshot of this fast-evolving technology, discusses current applications and caveats for their implementation, and offers suggestions for directions in the next decade.


Subject(s)
Computer Simulation , Drug Discovery/trends , Microchip Analytical Procedures , Animal Testing Alternatives , Animals , Biomedical Engineering , Cell Culture Techniques , Cells, Cultured , Humans
7.
ILAR J ; 62(1-2): 66-76, 2021 12 31.
Article in English | MEDLINE | ID: mdl-35421235

ABSTRACT

Animal studies in pharmaceutical drug discovery are common in preclinical research for compound evaluation before progression into human clinical trials. However, high rates of drug development attrition have prompted concerns regarding animal models and their predictive translatability to the clinic. To improve the characterization and evaluation of animal models for their translational relevance, the authors developed a tool to transparently reflect key features of a model that may be considered in both the application of the model but also the likelihood of successful translation of the outcomes to human patients. In this publication, we describe the rationale for the development of the Animal Model Quality Assessment tool, the questions used for the animal model assessment, and a high-level scoring system for the purpose of defining predictive translatability. Finally, we provide an example of a completed Animal Model Quality Assessment for the adoptive T-cell transfer model of colitis as a mouse model to mimic inflammatory bowel disease in humans.


Subject(s)
Disease Models, Animal , Drug Discovery , Animals , Humans , Mice
8.
Vet Pathol ; 57(3): 358-368, 2020 05.
Article in English | MEDLINE | ID: mdl-32180532

ABSTRACT

High-throughput in vitro models lack human-relevant complexity, which undermines their ability to accurately mimic in vivo biologic and pathologic responses. The emergence of microphysiological systems (MPS) presents an opportunity to revolutionize in vitro modeling for both basic biomedical research and applied drug discovery. The MPS platform has been an area of interdisciplinary collaboration to develop new, predictive, and reliable in vitro methods for regulatory acceptance. The current MPS models have been developed to recapitulate an organ or tissue on a smaller scale. However, the complexity of these models (ie, including all cell types present in the in vivo tissue) with appropriate structural, functional, and biochemical attributes are often not fully characterized. Here, we provide an overview of the capabilities and limitations of the microfluidic MPS model (aka organs-on-chips) within the scope of drug development. We recommend the engagement of pathologists early in the MPS design, characterization, and validation phases, because this will enable development of more robust and comprehensive MPS models that can accurately replicate normal biology and pathophysiology and hence be more predictive of human responses.


Subject(s)
In Vitro Techniques/methods , Models, Biological , Animals , Biomarkers , Cell Culture Techniques/methods , Cell Culture Techniques/trends , Communicable Diseases , Drug Discovery/methods , Neoplasms , Pathologists , Pluripotent Stem Cells , Tissue Culture Techniques/methods , Tissue Culture Techniques/trends
10.
Circ Res ; 125(9): 855-867, 2019 10 11.
Article in English | MEDLINE | ID: mdl-31600125

ABSTRACT

Given that cardiovascular safety concerns remain the leading cause of drug attrition at the preclinical drug development stage, the National Center for Toxicological Research of the US Food and Drug Administration hosted a workshop to discuss current gaps and challenges in translating preclinical cardiovascular safety data to humans. This white paper summarizes the topics presented by speakers from academia, industry, and government intended to address the theme of improving cardiotoxicity assessment in drug development. The main conclusion is that to reduce cardiovascular safety liabilities of new therapeutic agents, there is an urgent need to integrate human-relevant platforms/approaches into drug development. Potential regulatory applications of human-derived cardiomyocytes and future directions in employing human-relevant platforms to fill the gaps and overcome barriers and challenges in preclinical cardiovascular safety assessment were discussed. This paper is intended to serve as an initial step in a public-private collaborative development program for human-relevant cardiotoxicity tools, particularly for cardiotoxicities characterized by contractile dysfunction or structural injury.


Subject(s)
Cardiotoxicity/epidemiology , Cardiotoxins/toxicity , Education/standards , Research Report/standards , United States Food and Drug Administration/standards , Animals , Cardiotoxicity/prevention & control , Drug Evaluation, Preclinical/methods , Drug Evaluation, Preclinical/standards , Drug Evaluation, Preclinical/trends , Education/trends , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Research Report/trends , United States/epidemiology , United States Food and Drug Administration/trends
11.
Toxicol Pathol ; 47(7): 887-890, 2019 10.
Article in English | MEDLINE | ID: mdl-31522628

ABSTRACT

The National Toxicology Program (NTP) uses histopathological evaluation of animal tissues as a key element in its toxicity and carcinogenicity studies. The initial histopathological evaluations are subjected to a rigorous peer review process involving several steps. The NTP peer review process is conducted by multiple, highly trained, and experienced toxicological pathologists employing standardized terminology. In addition, ancillary data, such as body and organ weights and clinical pathology findings, are used to corroborate the diagnoses. The NTP does employ masked analysis to confirm subtle lesions or severity scores, as needed, and during its Pathology Working Groups. The use of masked analysis can have a negative effect on histopathological evaluation because it is important for the pathologist to compare treated groups to the concurrent controls, which would not be possible in a blinded evaluation. Therefore, the NTP supports an informed approach to histopathological evaluation in its toxicity and carcinogenicity studies.


Subject(s)
Pathology , Toxicology , Animals , Carcinogenicity Tests , Pathologists , Pathology/standards , Peer Review , Quality Control , Toxicity Tests , Toxicology/standards
13.
ALTEX ; 34(2): 301-310, 2017.
Article in English | MEDLINE | ID: mdl-27846345

ABSTRACT

Translating in vitro biological data into actionable information related to human health holds the potential to improve disease treatment and risk assessment of chemical exposures. While genomics has identified regulatory pathways at the cellular level, translation to the organism level requires a multiscale approach accounting for intra-cellular regulation, inter-cellular interaction, and tissue/organ-level effects. Tissue-level effects can now be probed in vitro thanks to recently developed systems of three-dimensional (3D), multicellular, "organotypic" cell cultures, which mimic functional responses of living tissue. However, there remains a knowledge gap regarding interactions across different biological scales, complicating accurate prediction of health outcomes from molecular/genomic data and tissue responses. Systems biology aims at mathematical modeling of complex, non-linear biological systems. We propose to apply a systems biology approach to achieve a computational representation of tissue-level physiological responses by integrating empirical data derived from organotypic culture systems with computational models of intracellular pathways to better predict human responses. Successful implementation of this integrated approach will provide a powerful tool for faster, more accurate and cost-effective screening of potential toxicants and therapeutics. On September 11, 2015, an interdisciplinary group of scientists, engineers, and clinicians gathered for a workshop in Research Triangle Park, North Carolina, to discuss this ambitious goal. Participants represented laboratory-based and computational modeling approaches to pharmacology and toxicology, as well as the pharmaceutical industry, government, non-profits, and academia. Discussions focused on identifying critical system perturbations to model, the computational tools required, and the experimental approaches best suited to generating key data.


Subject(s)
Cell Culture Techniques , Computer Simulation , Systems Biology , Animal Testing Alternatives , Animals , Cell Culture Techniques/methods , Hazardous Substances/toxicity , Humans , Lab-On-A-Chip Devices , Risk Assessment
14.
J Toxicol Pathol ; 29(3 Suppl): 1S-47S, 2016.
Article in English | MEDLINE | ID: mdl-27621537

ABSTRACT

The INHAND Project (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) is a joint initiative of the Societies of Toxicologic Pathology from Japan (JSTP), Europe (ESTP), Great Britain (BSTP) and North America (STP) to develop an internationally-accepted nomenclature for proliferative and non-proliferative lesions in laboratory animals. The primary purpose of this publication is to provide a standardized nomenclature for characterizing lesions observed in the cardiovascular (CV) system of rats and mice commonly used in drug or chemical safety assessment. The standardized nomenclature presented in this document is also available electronically for society members on the internet (http://goreni.org). Accurate and precise morphologic descriptions of changes in the CV system are important for understanding the mechanisms and pathogenesis of those changes, differentiation of natural and induced injuries and their ultimate functional consequence. Challenges in nomenclature are associated with lesions or pathologic processes that may present as a temporal or pathogenic spectrum or when natural and induced injuries share indistinguishable features. Specific nomenclature recommendations are offered to provide a consistent approach.

16.
ILAR J ; 57(2): 120-132, 2016 12.
Article in English | MEDLINE | ID: mdl-28053066

ABSTRACT

Cardiovascular (CV) safety liabilities are significant concerns for drug developers and preclinical animal studies are predominately where those liabilities are characterized before patient exposures. Steady progress in technology and laboratory capabilities is enabling a more refined and informative use of animals in those studies. The application of surgically implantable and telemetered instrumentation in the acute assessment of drug effects on CV function has significantly improved historical approaches that involved anesthetized or restrained animals. More chronically instrumented animals and application of common clinical imaging assessments like echocardiography and MRI extend functional and in-life structural assessments into the repeat-dose setting. A growing portfolio of circulating CV biomarkers is allowing longitudinal and repeated measures of cardiac and vascular injury and dysfunction better informing an understanding of temporal pathogenesis and allowing earlier detection of undesirable effects. In vitro modeling systems of the past were limited by their lack of biological relevance to the in vivo human condition. Advances in stem cell technology and more complex in vitro modeling platforms are quickly creating more opportunity to supplant animals in our earliest assessments for liabilities. Continuing improvement in our capabilities in both animal and nonanimal modeling should support a steady decrease in animal use for primary liability identification and optimize the translational relevance of the animal studies we continue to do.


Subject(s)
Animal Experimentation , Cardiovascular Diseases/prevention & control , Drug Discovery , Drug Evaluation, Preclinical , Animals , Disease Models, Animal , Humans
17.
Int J Toxicol ; 34(2): 151-61, 2015.
Article in English | MEDLINE | ID: mdl-25722321

ABSTRACT

Cardiovascular (CV) safety concerns are among the leading causes of compound attrition in drug development. This work describes a strategy of applying novel end points to a 7-day rodent study to increase the opportunity to detect and characterize CV injury observed in a longer term (ie, 28 days) study. Using a ghrelin receptor agonist (GSK894281), a compound that produces myocardial degeneration/necrosis in rats after 28 days at doses of 0.3, 1, 10, or 60 mg/kg/d, we dosed rats across a range of similar doses (0, 0.3, 60, or 150 mg/kg/d) for 7 days to determine whether CV toxicity could be detected in a shorter study. End points included light and electron microscopies of the heart; heart weight; serum concentrations of fatty acid-binding protein 3 (FABP3), cardiac troponin I (cTnI), cardiac troponin T (cTnT), and N-terminal proatrial natriuretic peptide (NT-proANP); and a targeted transcriptional assessment of heart tissue. Histologic evaluation revealed a minimal increase in the incidence and/or severity of cardiac necrosis in animals administered 150 mg/kg/d. Ultrastructurally, mitochondrial membrane whorls and mitochondrial degeneration were observed in rats given 60 or 150 mg/kg/d. The FABP3 was elevated in rats given 150 mg/kg/d. Cardiac transcriptomics revealed evidence of mitochondrial dysfunction coincident with histologic lesions in the heart, and along with the ultrastructural results support a mechanism of mitochondrial injury. There were no changes in cTnI, cTnT, NT-proANP, or heart weight. In summary, enhancing a study design with novel end points provides a more integrated evaluation in short-term repeat dose studies, potentially leading to earlier nonclinical detection of structural CV toxicity.


Subject(s)
Cardiovascular System/drug effects , Piperazines/toxicity , Receptors, Ghrelin/agonists , Sulfonamides/toxicity , Animals , Atrial Natriuretic Factor/blood , Dose-Response Relationship, Drug , Fatty Acid Binding Protein 3 , Fatty Acid-Binding Proteins/blood , Heart/drug effects , Male , Microscopy, Electron , Myocardium/metabolism , Myocardium/pathology , Myocardium/ultrastructure , Necrosis , Protein Precursors/blood , Rats , Real-Time Polymerase Chain Reaction , Transcriptome/drug effects , Troponin I/blood , Troponin T/blood
18.
J Pharmacol Toxicol Methods ; 68(1): 7-12, 2013.
Article in English | MEDLINE | ID: mdl-23567075

ABSTRACT

INTRODUCTION: The evaluation of cardiovascular side-effects is a critical element in the development of all new drugs and chemicals. Cardiac safety issues are a major cause of attrition and withdrawal due to adverse drug reactions (ADRs) in pharmaceutical drug development. METHODS: The evolution of the HESI Technical Committee on Cardiac Safety from 2000-2013 is presented as an example of an effective international consortium of academic, government, and industry scientists working to improve cardiac safety. RESULTS AND DISCUSSION: The HESI Technical Committee Working Groups facilitated the development of a variety of platforms for resource sharing and communication among experts that led to innovative strategies for improved drug safety. The positive impacts arising from these Working Groups are described in this article.


Subject(s)
Cardiovascular Diseases/prevention & control , Drug Design , Drug-Related Side Effects and Adverse Reactions/prevention & control , Advisory Committees , Animals , Cardiovascular Diseases/chemically induced , Communication , Humans , International Cooperation
19.
Toxicol Pathol ; 41(2): 151-80, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23262640

ABSTRACT

The 2012 annual National Toxicology Program (NTP) Satellite Symposium, entitled "Pathology Potpourri," was held in Boston in advance of the Society of Toxicologic Pathology's 31st annual meeting. The goal of the NTP Symposium is to present current diagnostic pathology or nomenclature issues to the toxicologic pathology community. This article presents summaries of the speakers' presentations, including diagnostic or nomenclature issues that were presented, along with select images that were used for audience voting or discussion. Some lesions and topics covered during the symposium include eosinophilic crystalline pneumonia in a transgenic mouse model; differentiating adrenal cortical cystic degeneration from adenoma; atypical eosinophilic foci of altered hepatocytes; differentiating cardiac schwannoma from cardiomyopathy; diagnosis of cardiac papillary muscle lesions; intrahepatocytic erythrocytes and venous subendothelial hepatocytes; lesions in Rathke's cleft and pars distalis; pernicious anemia and megaloblastic disorders; embryonic neuroepithelial dysplasia, holoprosencephaly and exencephaly; and INHAND nomenclature for select cardiovascular lesions.


Subject(s)
Pathology , Toxicology , Animals , Diagnostic Techniques and Procedures , Humans , Terminology as Topic
20.
Regul Toxicol Pharmacol ; 65(1): 38-46, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23044254

ABSTRACT

Cardiovascular (CV) safety concerns are a significant source of drug development attrition in the pharmaceutical industry today. Though current nonclinical testing paradigms have largely prevented catastrophic CV events in Phase I studies, many challenges relating to the inability of current nonclinical safety testing strategies to model patient outcomes persist. Contemporary approaches include a spectrum of evaluations of CV structure and function in a variety of laboratory animal species. These approaches might be improved with a more holistic integration of these evaluations in repeat-dose studies, addition of novel endpoints with greater sensitivity and translational application, and use of more relevant animal models. Particular opportunities present with advances in imaging capabilities applicable to rodent and non-rodent species, technical capabilities for measuring CV function in repeat-dose animal studies, detection and quantitation of microRNAs and wider use of alternative animal models. Strategic application of these novel opportunities considering putative CV risk associated with the molecular drug target as well as inherent risks present in the target patient population could tailor or 'personalize' nonclinical safety assessment as a more translational evaluation. This paper is a call to action for the clinical and nonclinical drug safety communities to assess these opportunities to determine their utility in filling potential gaps in our current cardiovascular safety testing paradigms.


Subject(s)
Cardiovascular Diseases/chemically induced , Drug Design , Drug-Related Side Effects and Adverse Reactions , Animals , Disease Models, Animal , Drug Industry/methods , Endpoint Determination , Humans , MicroRNAs/metabolism , Research Design , Risk Assessment/methods , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...