Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 623(7988): 803-813, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37938781

ABSTRACT

Patients with autoimmune polyendocrinopathy syndrome type 1 (APS-1) caused by autosomal recessive AIRE deficiency produce autoantibodies that neutralize type I interferons (IFNs)1,2, conferring a predisposition to life-threatening COVID-19 pneumonia3. Here we report that patients with autosomal recessive NIK or RELB deficiency, or a specific type of autosomal-dominant NF-κB2 deficiency, also have neutralizing autoantibodies against type I IFNs and are at higher risk of getting life-threatening COVID-19 pneumonia. In patients with autosomal-dominant NF-κB2 deficiency, these autoantibodies are found only in individuals who are heterozygous for variants associated with both transcription (p52 activity) loss of function (LOF) due to impaired p100 processing to generate p52, and regulatory (IκBδ activity) gain of function (GOF) due to the accumulation of unprocessed p100, therefore increasing the inhibitory activity of IκBδ (hereafter, p52LOF/IκBδGOF). By contrast, neutralizing autoantibodies against type I IFNs are not found in individuals who are heterozygous for NFKB2 variants causing haploinsufficiency of p100 and p52 (hereafter, p52LOF/IκBδLOF) or gain-of-function of p52 (hereafter, p52GOF/IκBδLOF). In contrast to patients with APS-1, patients with disorders of NIK, RELB or NF-κB2 have very few tissue-specific autoantibodies. However, their thymuses have an abnormal structure, with few AIRE-expressing medullary thymic epithelial cells. Human inborn errors of the alternative NF-κB pathway impair the development of AIRE-expressing medullary thymic epithelial cells, thereby underlying the production of autoantibodies against type I IFNs and predisposition to viral diseases.


Subject(s)
Autoantibodies , Genetic Predisposition to Disease , Interferon Type I , NF-kappa B , Humans , Autoantibodies/immunology , COVID-19/genetics , COVID-19/immunology , Gain of Function Mutation , Heterozygote , I-kappa B Proteins/deficiency , I-kappa B Proteins/genetics , Interferon Type I/antagonists & inhibitors , Interferon Type I/immunology , Loss of Function Mutation , NF-kappa B/deficiency , NF-kappa B/genetics , NF-kappa B p52 Subunit/deficiency , NF-kappa B p52 Subunit/genetics , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , Thymus Gland/abnormalities , Thymus Gland/immunology , Thymus Gland/pathology , Thyroid Epithelial Cells/metabolism , Thyroid Epithelial Cells/pathology , AIRE Protein , NF-kappaB-Inducing Kinase
2.
JCI Insight ; 8(11)2023 06 08.
Article in English | MEDLINE | ID: mdl-37288664

ABSTRACT

Insulin secretion from pancreatic ß cells is essential to the maintenance of glucose homeostasis. Defects in this process result in diabetes. Identifying genetic regulators that impair insulin secretion is crucial for the identification of novel therapeutic targets. Here, we show that reduction of ZNF148 in human islets, and its deletion in stem cell-derived ß cells (SC-ß cells), enhances insulin secretion. Transcriptomics of ZNF148-deficient SC-ß cells identifies increased expression of annexin and S100 genes whose proteins form tetrameric complexes involved in regulation of insulin vesicle trafficking and exocytosis. ZNF148 in SC-ß cells prevents translocation of annexin A2 from the nucleus to its functional place at the cell membrane via direct repression of S100A16 expression. These findings point to ZNF148 as a regulator of annexin-S100 complexes in human ß cells and suggest that suppression of ZNF148 may provide a novel therapeutic strategy to enhance insulin secretion.


Subject(s)
Insulin-Secreting Cells , Humans , Insulin-Secreting Cells/metabolism , Insulin Secretion , Glucose/metabolism , Insulin/metabolism , Exocytosis , DNA-Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Sci Signal ; 15(733): eabj8204, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35536884

ABSTRACT

Variants in the gene encoding ankyrin repeat and SOCS box-containing 4 (ASB4) are linked to human obesity. Here, we characterized the pathways underlying the metabolic functions of ASB4. Hypothalamic Asb4 expression was suppressed by fasting in wild-type mice but not in mice deficient in AgRP, which encodes Agouti-related protein (AgRP), an appetite-stimulating hormone, suggesting that ASB4 is a negative target of AgRP. Many ASB4 neurons in the brain were adjacent to AgRP terminals, and feeding induced by AgRP neuronal activation was disrupted in Asb4-deficient mice. Acute knockdown of Asb4 in the brain caused marked hyperphagia due to increased meal size, and Asb4 deficiency led to increased meal size and food intake at the onset of refeeding, when very large meals were consumed. Asb4-deficient mice were resistant to the meal-terminating effects of exogenously administered calcitonin and showed decreased neuronal expression of Calcr, which encodes the calcitonin receptor. Pro-opiomelanocortin (POMC) neurons in the arcuate nucleus in mice are involved in glucose homeostasis, and Asb4 deficiency specifically in POMC neurons resulted in glucose intolerance that was independent of obesity. Furthermore, individuals with type 2 diabetes showed reduced ASB4 abundance in the infundibular nuclei, the human equivalent of the arcuate nucleus. Together, our results indicate that ASB4 acts in the brain to improve glucose homeostasis and to induce satiety after substantial meals, particularly those after food deprivation.


Subject(s)
Diabetes Mellitus, Type 2 , Neuropeptides , Agouti-Related Protein/genetics , Agouti-Related Protein/metabolism , Agouti-Related Protein/pharmacology , Animals , Calcitonin/metabolism , Calcitonin/pharmacology , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Homeostasis , Hypothalamus/metabolism , Mice , Neurons/metabolism , Neuropeptides/metabolism , Obesity/genetics , Obesity/metabolism , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism , Pro-Opiomelanocortin/pharmacology
4.
Cell Rep ; 36(7): 109538, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34407395

ABSTRACT

Stem cell-based replacement therapies hold the promise to restore function of damaged or degenerated tissue such as the pancreatic islets in people with type 1 diabetes. Wide application of these therapies requires overcoming the fundamental roadblock of immune rejection. To address this issue, we use genetic engineering to create human pluripotent stem cells (hPSCs) in which the majority of the polymorphic human leukocyte antigens (HLAs), the main drivers of allogeneic rejection, are deleted. We retain the common HLA class I allele HLA-A2 and less polymorphic HLA-E/F/G to allow immune surveillance and inhibition of natural killer (NK) cells. We employ a combination of in vitro assays and humanized mouse models to demonstrate that these gene manipulations significantly reduce NK cell activity and T-cell-mediated alloimmune response against hPSC-derived islet cells. In summary, our approach produces hypoimmunogenic hPSCs that can be readily matched with recipients to avoid alloimmune rejection.


Subject(s)
Gene Deletion , Graft Rejection/immunology , HLA Antigens/metabolism , Islets of Langerhans/immunology , Pluripotent Stem Cells/cytology , Alleles , Animals , Cell Line , Clone Cells , Humans , Killer Cells, Natural/immunology , Lymphocyte Activation/immunology , Male , Mice, Inbred NOD , T-Lymphocytes/immunology
5.
Elife ; 102021 05 19.
Article in English | MEDLINE | ID: mdl-34009124

ABSTRACT

To study disease development, an inventory of an organ's cell types and understanding of physiologic function is paramount. Here, we performed single-cell RNA-sequencing to examine heterogeneity of murine pancreatic duct cells, pancreatobiliary cells, and intrapancreatic bile duct cells. We describe an epithelial-mesenchymal transitory axis in our three pancreatic duct subpopulations and identify osteopontin as a regulator of this fate decision as well as human duct cell dedifferentiation. Our results further identify functional heterogeneity within pancreatic duct subpopulations by elucidating a role for geminin in accumulation of DNA damage in the setting of chronic pancreatitis. Our findings implicate diverse functional roles for subpopulations of pancreatic duct cells in maintenance of duct cell identity and disease progression and establish a comprehensive road map of murine pancreatic duct cell, pancreatobiliary cell, and intrapancreatic bile duct cell homeostasis.


Subject(s)
Gene Expression Profiling , Genetic Heterogeneity , Pancreatic Ducts/cytology , Single-Cell Analysis , Transcriptome , Animals , Cell Line , Cell Separation , DNA Damage , Databases, Genetic , Disease Models, Animal , Epithelial-Mesenchymal Transition , Female , Geminin/genetics , Geminin/metabolism , Gene Expression Regulation, Developmental , Humans , Mice, Inbred C57BL , Mice, Transgenic , Morphogenesis , Osteopontin/genetics , Osteopontin/metabolism , Pancreatic Ducts/metabolism , Pancreatitis, Chronic/genetics , Pancreatitis, Chronic/metabolism , Pancreatitis, Chronic/pathology , Phenotype , RNA-Seq
6.
Nat Commun ; 12(1): 1096, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33597545

ABSTRACT

The thymus' key function in the immune system is to provide the necessary environment for the development of diverse and self-tolerant T lymphocytes. While recent evidence suggests that the thymic stroma is comprised of more functionally distinct subpopulations than previously appreciated, the extent of this cellular heterogeneity in the human thymus is not well understood. Here we use single-cell RNA sequencing to comprehensively profile the human thymic stroma across multiple stages of life. Mesenchyme, pericytes and endothelial cells are identified as potential key regulators of thymic epithelial cell differentiation and thymocyte migration. In-depth analyses of epithelial cells reveal the presence of ionocytes as a medullary population, while the expression of tissue-specific antigens is mapped to different subsets of epithelial cells. This work thus provides important insight on how the diversity of thymic cells is established, and how this heterogeneity contributes to the induction of immune tolerance in humans.


Subject(s)
Epithelial Cells/metabolism , Gene Expression Profiling/methods , Genetic Heterogeneity , Single-Cell Analysis/methods , Thymus Gland/metabolism , Adult , Animals , Cell Differentiation/genetics , Cell Lineage/genetics , Endothelial Cells/cytology , Endothelial Cells/metabolism , Humans , Mesoderm/cytology , Mesoderm/metabolism , Mice , Pericytes/cytology , Pericytes/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Thymocytes/cytology , Thymocytes/metabolism , Thymus Gland/cytology , Thymus Gland/embryology
7.
Plant J ; 103(2): 781-800, 2020 07.
Article in English | MEDLINE | ID: mdl-32282967

ABSTRACT

Terpenoid metabolism plays vital roles in stress defense and the environmental adaptation of monocot crops. Here, we describe the identification of the terpene synthase (TPS) gene family of the panicoid food and bioenergy model crop foxtail millet (Setaria italica). The diploid S. italica genome contains 32 TPS genes, 17 of which were biochemically characterized in this study. Unlike other thus far investigated grasses, S. italica contains TPSs producing all three ent-, (+)- and syn-copalyl pyrophosphate stereoisomers that naturally occur as central building blocks in the biosynthesis of distinct monocot diterpenoids. Conversion of these intermediates by the promiscuous TPS SiTPS8 yielded different diterpenoid scaffolds. Additionally, a cytochrome P450 monooxygenase (CYP99A17), which genomically clustered with SiTPS8, catalyzes the C19 hydroxylation of SiTPS8 products to generate the corresponding diterpene alcohols. The presence of syntenic orthologs to about 19% of the S. italica TPSs in related grasses supports a common ancestry of selected pathway branches. Among the identified enzyme products, abietadien-19-ol, syn-pimara-7,15-dien-19-ol and germacrene-d-4-ol were detectable in planta, and gene expression analysis of the biosynthetic TPSs showed distinct and, albeit moderately, inducible expression patterns in response to biotic and abiotic stress. In vitro growth-inhibiting activity of abietadien-19-ol and syn-pimara-7,15-dien-19-ol against Fusarium verticillioides and Fusarium subglutinans may indicate pathogen defensive functions, whereas the low antifungal efficacy of tested sesquiterpenoids supports other bioactivities. Together, these findings expand the known chemical space of monocot terpenoid metabolism to enable further investigations of terpenoid-mediated stress resilience in these agriculturally important species.


Subject(s)
Alkyl and Aryl Transferases/genetics , Genes, Plant/genetics , Plant Proteins/genetics , Setaria Plant/genetics , Genome, Plant/genetics , Multigene Family/genetics , Setaria Plant/enzymology , Terpenes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...