Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 109(25): 9739-43, 2012 Jun 19.
Article in English | MEDLINE | ID: mdl-22675121

ABSTRACT

Reversible voltammograms and a voltammetry half-wave potential versus solution pH diagram are described for a protein tyrosine radical. This work required a de novo designed tyrosine-radical protein displaying a unique combination of structural and electrochemical properties. The α(3)Y protein is structurally stable across a broad pH range. The redox-active tyrosine Y32 resides in a desolvated and well-structured environment. Y32 gives rise to reversible square-wave and differential pulse voltammograms at alkaline pH. The formal potential of the Y32-O(•)/Y32-OH redox couple is determined to 918 ± 2 mV versus the normal hydrogen electrode at pH 8.40 ± 0.01. The observation that Y32 gives rise to fully reversible voltammograms translates into an estimated lifetime of ≥30 ms for the Y32-O(•) state. This illustrates the range of tyrosine-radical stabilization that a structured protein can offer. Y32 gives rise to quasireversible square-wave and differential pulse voltammograms at acidic pH. These voltammograms represent the Y32 species at the upper edge of the quasirevesible range. The square-wave net potential closely approximates the formal potential of the Y32-O(•)/Y32-OH redox couple to 1,070 ± 1 mV versus the normal hydrogen electrode at pH 5.52 ± 0.01. The differential pulse voltammetry half-wave potential of the Y32-O(•)/Y32-OH redox pair is measured between pH 4.7 and 9.0. These results are described and analyzed.


Subject(s)
Electrochemical Techniques , Proteins/chemistry , Tyrosine/chemistry
2.
J Am Chem Soc ; 133(44): 17786-95, 2011 Nov 09.
Article in English | MEDLINE | ID: mdl-22011192

ABSTRACT

This report describes a model protein specifically tailored to electrochemically study the reduction potential of protein tyrosine radicals as a function of pH. The model system is based on the 67-residue α(3)Y three-helix bundle. α(3)Y contains a single buried tyrosine at position 32 and displays structural properties inherent to a protein. The present report presents differential pulse voltammograms obtained from α(3)Y at both acidic (pH 5.6) and alkaline (pH 8.3) conditions. The observed Faradaic response is uniquely associated with Y32, as shown by site-directed mutagenesis. This is the first time voltammetry is successfully applied to detect a redox-active tyrosine residing in a structured protein environment. Tyrosine is a proton-coupled electron-transfer cofactor making voltammetry-based pH titrations a central experimental approach. A second set of experiments was performed to demonstrate that pH-dependent studies can be conducted on the redox-active tyrosine without introducing large-scale structural changes in the protein scaffold. α(3)Y was re-engineered with the specific aim to place the imidazole group of a histidine close to the Y32 phenol ring. α(3)Y-K29H and α(3)Y-K36H each contain a histidine residue whose protonation perturbs the fluorescence of Y32. We show that these variants are stable and well-folded proteins whose helical content, tertiary structure, solution aggregation state, and solvent-sequestered position of Y32 remain pH insensitive across a range of at least 3-4 pH units. These results confirm that the local environment of Y32 can be altered and the resulting radical site studied by voltammetry over a broad pH range without interference from long-range structural effects.


Subject(s)
Proteins/chemistry , Tyrosine/chemistry , Electrochemistry , Free Radicals/chemistry , Hydrogen-Ion Concentration , Molecular Structure , Proteins/isolation & purification
4.
Biochim Biophys Acta ; 1707(1): 103-16, 2005 Feb 25.
Article in English | MEDLINE | ID: mdl-15721609

ABSTRACT

Amino-acid radical enzymes are often highly complex structures containing multiple protein subunits and cofactors. These properties have in many cases hampered the detailed characterization of their amino-acid redox cofactors. To address this problem, a range of approaches has recently been developed in which a common strategy is to reduce the complexity of the radical-containing system. This work will be reviewed and it includes the light-induced generation of aromatic radicals in small-molecule and peptide systems. Natural redox proteins, including the blue copper protein azurin and a bacterial photosynthetic reaction center, have been engineered to introduce amino-acid radical chemistry. The redesign strategies to achieve this remarkable change in the properties of these proteins will be described. An additional approach to gain insights into the properties of amino-acid radicals is to synthesize de novo designed model proteins in which the redox chemistry of these species can be studied. Here we describe the design, synthesis and characteristics of monomeric three-helix bundle and four-helix bundle proteins designed to study the redox chemistry of tryptophan and tyrosine. This work demonstrates that de novo protein design combined with structural, electrochemical and quantum chemical analyses can provide detailed information on how the protein matrix tunes the thermodynamic properties of tryptophan.


Subject(s)
Amino Acids/chemistry , Enzymes/chemistry , Free Radicals/chemistry , Models, Chemical , Protein Engineering/methods , Azurin/chemistry , Oxidation-Reduction , Photosynthetic Reaction Center Complex Proteins/chemistry , Protein Conformation , Protein Subunits , Thermodynamics , Tryptophan/chemistry , Tyrosine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...