Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Struct Biol ; 175(2): 230-5, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21605683

ABSTRACT

A major advance in protein structure determination has been the advent of nanolitre-scale crystallization and (in a high-throughput environment) the development of robotic systems for storing and imaging crystallization trials. Most of these trials are carried out in 96-well (or higher density) plates and managing them is a significant information management challenge. We describe xtalPiMS, a web-based application for the management and monitoring of crystallization trials. xtalPiMS has a user-interface layer based on the standards of the Protein Information Management System (PiMS) and a database layer which links the crystallization trial images to the meta-data associated with a particular crystallization trial. The user interface has been optimized for the efficient monitoring of high-throughput environments with three different automated imagers and work to support a fourth imager is in progress, but it can even be of use without robotics. The database can either be a PiMS database or a legacy database for which a suitable mapping layer has been developed.


Subject(s)
Database Management Systems , Information Management/methods , Proteins/chemistry , Crystallography, X-Ray , Databases, Protein , Online Systems , User-Computer Interface
2.
Acta Crystallogr D Biol Crystallogr ; 62(Pt 10): 1137-49, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17001091

ABSTRACT

This paper reviews the developments in high-throughput and nanolitre-scale protein crystallography technologies within the remit of workpackage 4 of the Structural Proteomics In Europe (SPINE) project since the project's inception in October 2002. By surveying the uptake, use and experience of new technologies by SPINE partners across Europe, a picture emerges of highly successful adoption of novel working methods revolutionizing this area of structural biology. Finally, a forward view is taken of how crystallization methodologies may develop in the future.


Subject(s)
Crystallography/methods , Proteins/chemistry , Crystallography/instrumentation , Crystallography/trends , Image Processing, Computer-Assisted , Nanotechnology , Plastics , Proteomics , Quality Control , Robotics
3.
Acta Crystallogr D Biol Crystallogr ; 61(Pt 6): 651-7, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15930615

ABSTRACT

Crystallization trials at the Division of Structural Biology in Oxford are now almost exclusively carried out using a high-throughput workflow implemented in the Oxford Protein Production Facility. Initial crystallization screening is based on nanolitre-scale sitting-drop vapour-diffusion experiments (typically 100 nl of protein plus 100 nl of reservoir solution per droplet) which use standard crystallization screening kits and 96-well crystallization plates. For 294 K crystallization trials the barcoded crystallization plates are entered into an automated storage system with a fully integrated imaging system. These plates are imaged in accordance with a pre-programmed schedule and the resulting digital data for each droplet are harvested into a laboratory information-management system (LIMS), scored by crystal recognition software and displayed for user analysis via a web-based interface. Currently, storage for trials at 277 K is not automated and for imaging the crystallization plates are fed by hand into an imaging system from which the data enter the LIMS. The workflow includes two procedures for nanolitre-scale optimization of crystallization conditions: (i) a protocol for variation of pH, reservoir dilution and protein:reservoir ratio and (ii) an additive screen. Experience based on 592 crystallization projects is reported.


Subject(s)
Crystallography, X-Ray/methods , Nanotechnology/methods , Proteins/chemistry , Animals , Automation/instrumentation , Automation/methods , Crystallography, X-Ray/instrumentation , Humans , Nanotechnology/instrumentation
4.
Structure ; 13(2): 175-82, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15698562

ABSTRACT

We describe the design of a database and software for managing and organizing protein crystallization data. We also outline the considerations behind the design of a fast web interface linking protein production data, crystallization images, and automated image analysis. The database and associated interfaces underpin the Oxford Protein Production Facility (OPPF) crystallization laboratory, collecting, in a routine and automatic manner, up to 100,000 images per day. Over 17 million separate images are currently held in this database. We discuss the substantial scientific benefits automated tracking, imaging, and analysis of crystallizations offers to the structural biologist: analysis of the time course of the trial and easy analysis of trials with related crystallization conditions. Features of this system address requirements common to many crystallographic laboratories that are currently setting up (semi-)automated crystallization imaging systems.


Subject(s)
Crystallography , Database Management Systems , Databases, Protein , Image Processing, Computer-Assisted , Crystallization
SELECTION OF CITATIONS
SEARCH DETAIL
...