Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 563(7732): E27, 2018 11.
Article in English | MEDLINE | ID: mdl-30250255

ABSTRACT

We wish to correct two mutations in Supplementary Table 4 of this Letter. The NCI-H460 cell line was annotated as being mutant for TP53. NCI-H460 has been verified to be TP53 wild type by several sources1. The NCI-H2009 cell line was annotated as being mutant for PIK3CA. As annotated by COSMIC (ref. 24 of the original Letter) and CCLE (ref. 25 of the original Letter), the NCI-H2009 cell line has a mutation in PIK3C3, rather than PIK3CA. The cell line is wild type for PIK3CA. The Supplementary Information of this Amendment contains the corrected Supplementary Table 4. These errors do not affect our conclusions. The original Letter has not been corrected.

2.
Nature ; 520(7546): 239-42, 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25629630

ABSTRACT

Non-small-cell lung cancer is the leading cause of cancer-related death worldwide. Chemotherapies such as the topoisomerase II (TopoII) inhibitor etoposide effectively reduce disease in a minority of patients with this cancer; therefore, alternative drug targets, including epigenetic enzymes, are under consideration for therapeutic intervention. A promising potential epigenetic target is the methyltransferase EZH2, which in the context of the polycomb repressive complex 2 (PRC2) is well known to tri-methylate histone H3 at lysine 27 (H3K27me3) and elicit gene silencing. Here we demonstrate that EZH2 inhibition has differential effects on the TopoII inhibitor response of non-small-cell lung cancers in vitro and in vivo. EGFR and BRG1 mutations are genetic biomarkers that predict enhanced sensitivity to TopoII inhibitor in response to EZH2 inhibition. BRG1 loss-of-function mutant tumours respond to EZH2 inhibition with increased S phase, anaphase bridging, apoptosis and TopoII inhibitor sensitivity. Conversely, EGFR and BRG1 wild-type tumours upregulate BRG1 in response to EZH2 inhibition and ultimately become more resistant to TopoII inhibitor. EGFR gain-of-function mutant tumours are also sensitive to dual EZH2 inhibition and TopoII inhibitor, because of genetic antagonism between EGFR and BRG1. These findings suggest an opportunity for precision medicine in the genetically complex disease of non-small-cell lung cancer.


Subject(s)
DNA Helicases/genetics , Genes, erbB-1/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Nuclear Proteins/genetics , Polycomb Repressive Complex 2/antagonists & inhibitors , Topoisomerase II Inhibitors/pharmacology , Topoisomerase II Inhibitors/therapeutic use , Transcription Factors/genetics , Anaphase/drug effects , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Cycle/drug effects , Cell Line, Tumor , Enhancer of Zeste Homolog 2 Protein , Etoposide/pharmacology , Etoposide/therapeutic use , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/pathology , Mice , Molecular Targeted Therapy , Xenograft Model Antitumor Assays
3.
Antimicrob Agents Chemother ; 57(12): 5977-86, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24041906

ABSTRACT

The type II topoisomerases DNA gyrase (GyrA/GyrB) and topoisomerase IV (ParC/ParE) are well-validated targets for antibacterial drug discovery. Because of their structural and functional homology, these enzymes are amenable to dual targeting by a single ligand. In this study, two novel benzothiazole ethyl urea-based small molecules, designated compound A and compound B, were evaluated for their biochemical, antibacterial, and pharmacokinetic properties. The two compounds inhibited the ATPase activity of GyrB and ParE with 50% inhibitory concentrations of <0.1 µg/ml. Prevention of DNA supercoiling by DNA gyrase was also observed. Both compounds potently inhibited the growth of a range of bacterial organisms, including staphylococci, streptococci, enterococci, Clostridium difficile, and selected Gram-negative respiratory pathogens. MIC90s against clinical isolates ranged from 0.015 µg/ml for Streptococcus pneumoniae to 0.25 µg/ml for Staphylococcus aureus. No cross-resistance with common drug resistance phenotypes was observed. In addition, no synergistic or antagonistic interactions between compound A or compound B and other antibiotics, including the topoisomerase inhibitors novobiocin and levofloxacin, were detected in checkerboard experiments. The frequencies of spontaneous resistance for S. aureus were <2.3 × 10(-10) with compound A and <5.8 × 10(-11) with compound B at concentrations equivalent to 8× the MICs. These values indicate a multitargeting mechanism of action. The pharmacokinetic properties of both compounds were profiled in rats. Following intravenous administration, compound B showed approximately 3-fold improvement over compound A in terms of both clearance and the area under the concentration-time curve. The measured oral bioavailability of compound B was 47.7%.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Benzothiazoles/pharmacology , DNA Topoisomerase IV/antagonists & inhibitors , DNA Topoisomerases, Type II/metabolism , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Topoisomerase Inhibitors/pharmacology , Urea/analogs & derivatives , Adenosine Triphosphatases/antagonists & inhibitors , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacokinetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Benzothiazoles/chemistry , Benzothiazoles/pharmacokinetics , Cell Survival/drug effects , DNA Topoisomerase IV/genetics , DNA Topoisomerase IV/metabolism , DNA Topoisomerases, Type II/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Gram-Negative Bacteria/enzymology , Gram-Negative Bacteria/growth & development , Gram-Positive Bacteria/enzymology , Gram-Positive Bacteria/growth & development , Hep G2 Cells , Humans , Interleukin-33 , Interleukins , Levofloxacin/pharmacology , Male , Microbial Sensitivity Tests , Novobiocin/pharmacology , Rats , Rats, Sprague-Dawley , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Topoisomerase Inhibitors/chemistry , Topoisomerase Inhibitors/pharmacokinetics , Urea/chemistry , Urea/pharmacokinetics , Urea/pharmacology
4.
Antimicrob Agents Chemother ; 57(1): 317-25, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23114779

ABSTRACT

The bacterial cell division protein FtsZ is an attractive target for small-molecule antibacterial drug discovery. Derivatives of 3-methoxybenzamide, including compound PC190723, have been reported to be potent and selective antistaphylococcal agents which exert their effects through the disruption of intracellular FtsZ function. Here, we report the further optimization of 3-methoxybenzamide derivatives towards a drug candidate. The in vitro and in vivo characterization of a more advanced lead compound, designated compound 1, is described. Compound 1 was potently antibacterial, with an average MIC of 0.12 µg/ml against all staphylococcal species, including methicillin- and multidrug-resistant Staphylococcus aureus and Staphylococcus epidermidis. Compound 1 inhibited an S. aureus strain carrying the G196A mutation in FtsZ, which confers resistance to PC190723. Like PC190723, compound 1 acted on whole bacterial cells by blocking cytokinesis. No interactions between compound 1 and a diverse panel of antibiotics were measured in checkerboard experiments. Compound 1 displayed suitable in vitro pharmaceutical properties and a favorable in vivo pharmacokinetic profile following intravenous and oral administration, with a calculated bioavailability of 82.0% in mice. Compound 1 demonstrated efficacy in a murine model of systemic S. aureus infection and caused a significant decrease in the bacterial load in the thigh infection model. A greater reduction in the number of S. aureus cells recovered from infected thighs, equivalent to 3.68 log units, than in those recovered from controls was achieved using a succinate prodrug of compound 1, which was designated compound 2. In summary, optimized derivatives of 3-methoxybenzamide may yield a first-in-class FtsZ inhibitor for the treatment of antibiotic-resistant staphylococcal infections.


Subject(s)
Anti-Bacterial Agents/pharmacokinetics , Bacterial Proteins/antagonists & inhibitors , Benzamides/pharmacokinetics , Cytoskeletal Proteins/antagonists & inhibitors , Methicillin-Resistant Staphylococcus aureus/drug effects , Oxazoles/pharmacokinetics , Prodrugs/pharmacokinetics , Staphylococcal Infections/drug therapy , Staphylococcus epidermidis/drug effects , Succinates/pharmacokinetics , Administration, Oral , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Benzamides/chemical synthesis , Benzamides/chemistry , Benzamides/pharmacology , Biological Availability , Colony Count, Microbial , Cytokinesis/drug effects , Cytoskeletal Proteins/genetics , Drug Resistance, Multiple, Bacterial , Female , Injections, Intravenous , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/growth & development , Mice , Microbial Sensitivity Tests , Mutation , Oxazoles/chemical synthesis , Oxazoles/pharmacology , Prodrugs/chemical synthesis , Prodrugs/pharmacology , Staphylococcal Infections/microbiology , Staphylococcus epidermidis/growth & development , Succinates/chemical synthesis , Succinates/pharmacology , Succinic Acid/chemistry , Thigh/microbiology , Treatment Outcome
5.
Mol Cancer Res ; 1(11): 826-35, 2003 Sep.
Article in English | MEDLINE | ID: mdl-14517345

ABSTRACT

Comparative two-dimensional proteome analysis was used to identify proteins differentially expressed in multiple clinical normal and breast cancer tissues. One protein, the expression of which was elevated in invasive ductal and lobular breast carcinomas when compared with normal breast tissue, was arylamine N-acetyltransferase-1 (NAT-1), a Phase II drug-metabolizing enzyme. NAT-1 overexpression in clinical breast cancers was confirmed at the mRNA level and immunohistochemical analysis of NAT-1 in 108 breast cancer donors demonstrated a strong association of NAT-1 staining with estrogen receptor-positive tumors. Analysis of the effect of active NAT-1 overexpression in a normal luminal epithelial-derived cell line demonstrated enhanced growth properties and etoposide resistance relative to control cells. Thus, NAT-1 may not only play a role in the development of cancers through enhanced mutagenesis but may also contribute to the resistance of some cancers to cytotoxic drugs.


Subject(s)
Arylamine N-Acetyltransferase/genetics , Arylamine N-Acetyltransferase/metabolism , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Drug Resistance, Neoplasm , Etoposide/pharmacology , Breast/cytology , Breast/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cell Division/drug effects , Cell Survival/drug effects , Gene Expression Regulation, Neoplastic , Humans , Immunohistochemistry , Organ Specificity , Proteomics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tumor Cells, Cultured , Up-Regulation
6.
J Biol Chem ; 278(8): 6482-9, 2003 Feb 21.
Article in English | MEDLINE | ID: mdl-12477722

ABSTRACT

Proteins associated with cancer cell plasma membranes are rich in known drug and antibody targets as well as other proteins known to play key roles in the abnormal signal transduction processes required for carcinogenesis. We describe here a proteomics process that comprehensively annotates the protein content of breast tumor cell membranes and defines the clinical relevance of such proteins. Tumor-derived cell lines were used to ensure an enrichment for cancer cell-specific plasma membrane proteins because it is difficult to purify cancer cells and then obtain good membrane preparations from clinical material. Multiple cell lines with different molecular pathologies were used to represent the clinical heterogeneity of breast cancer. Peptide tandem mass spectra were searched against a comprehensive data base containing known and conceptual proteins derived from many public data bases including the draft human genome sequences. This plasma membrane-enriched proteome analysis created a data base of more than 500 breast cancer cell line proteins, 27% of which were of unknown function. The value of our approach is demonstrated by further detailed analyses of three previously uncharacterized proteins whose clinical relevance has been defined by their unique cancer expression profiles and the identification of protein-binding partners that elucidate potential functionality in cancer.


Subject(s)
Breast Neoplasms/genetics , Membrane Proteins/genetics , Neoplasm Proteins/genetics , Proteome/genetics , Amino Acid Sequence , Base Sequence , Breast Neoplasms/pathology , Cloning, Molecular , Female , Humans , Membrane Proteins/chemistry , Molecular Sequence Data , Neoplasm Proteins/chemistry , Neoplasm Proteins/metabolism , Peptide Fragments/chemistry , Polymerase Chain Reaction , Proteome/chemistry , Proteome/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Transfection , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...