Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Microbiol ; 58(11)2020 10 21.
Article in English | MEDLINE | ID: mdl-32878950

ABSTRACT

Tick-borne diseases, due to a diversity of bacterial pathogens, represent a significant and increasing public health threat throughout the Northern Hemisphere. A high-throughput 16S V1-V2 rRNA gene-based metagenomics assay was developed and evaluated using >13,000 residual samples from patients suspected of having tick-borne illness and >1,000 controls. Taxonomic predictions for tick-borne bacteria were exceptionally accurate, as independently validated by secondary testing. Overall, 881 specimens were positive for bacterial tick-borne agents. Twelve tick-borne bacterial species were detected, including two novel pathogens, representing a 100% increase in the number of tick-borne bacteria identified compared to what was possible by initial PCR testing. In three blood specimens, two tick-borne bacteria were simultaneously detected. Seven bacteria, not known to be tick transmitted, were also confirmed to be unique to samples from persons suspected of having tick-borne illness. These results indicate that 16S V1-V2 metagenomics can greatly simplify diagnosis and accelerate the discovery of bacterial tick-borne pathogens.


Subject(s)
Ehrlichiosis , Tick-Borne Diseases , Ticks , Animals , Bacteria/genetics , Humans , Metagenomics , RNA, Ribosomal, 16S/genetics , Tick-Borne Diseases/diagnosis
2.
Clin Infect Dis ; 66(12): 1864-1871, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29272385

ABSTRACT

Background: Tick-transmitted Borrelia fall into 2 heterogeneous bacterial complexes comprised of multiple species, the relapsing fever (RF) group and the Borrelia burgdorferi sensu lato group, which are the causative agents of Lyme borreliosis (LB), the most common tickborne disease in the Northern Hemisphere. Geographic expansion of LB in the United States and discovery of emerging Borrelia pathogens underscores the importance of surveillance for disease-causing Borrelia. Methods: De-identified clinical specimens, submitted by providers throughout the United States, for patients suspected of LB, anaplasmosis, ehrlichiosis, or babesiosis were screened using a Borrelia genus-level TaqMan polymerase chain reaction (PCR). Borrelia species and sequence types (STs) were characterized by multilocus sequence typing (MLST) utilizing next-generation sequencing. Results: Among 7292 specimens tested, 5 Borrelia species were identified: 2 causing LB, B. burgdorferi (n = 25) and B. mayonii (n = 9), and 3 RF borreliae, B. hermsii (n = 1), B. miyamotoi (n = 8), and Candidatus B. johnsonii (n = 1), a species previously detected only in the bat tick, Carios kelleyi. ST diversity was greatest for B. burgdorferi-positive specimens, with new STs identified primarily among synovial fluids. Conclusions: These results demonstrate that broad PCR screening followed by MLST is a powerful surveillance tool for uncovering the spectrum of disease-causing Borrelia species, understanding their geographic distribution, and investigating the correlation between B. burgdorferi STs and joint involvement. Detection of Candidatus B. johnsonii in a patient with suspected tickborne disease suggests this species may be a previously undetected cause of illness in humans exposed to bat ticks.


Subject(s)
Borrelia/isolation & purification , Epidemiological Monitoring , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/microbiology , Animals , Bacterial Typing Techniques , Borrelia/classification , Borrelia/pathogenicity , Borrelia burgdorferi Group/classification , Borrelia burgdorferi Group/isolation & purification , Chiroptera/parasitology , Geography , High-Throughput Nucleotide Sequencing , Humans , Ixodes/microbiology , Lyme Disease/epidemiology , Multilocus Sequence Typing , Polymerase Chain Reaction , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...