Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38328254

ABSTRACT

Here, we describe a novel pan-RAS inhibitor, ADT-007, that potently inhibited the growth of RAS mutant cancer cells irrespective of the RAS mutation or isozyme. RAS WT cancer cells with activated RAS from upstream mutations were equally sensitive. Conversely, cells from normal tissues or RAS WT cancer cells harboring downstream BRAF mutations were insensitive. Insensitivity to ADT-007 was attributed to low activated RAS levels and metabolic deactivation by UDP-glucuronosyltransferases expressed in normal cells but repressed in RAS mutant cancer cells. Cellular, biochemical, and biophysical experiments show ADT-007 binds nucleotide-free RAS to block GTP activation of RAS and MAPK/AKT signaling. Local administration of ADT-007 strongly inhibited tumor growth in syngeneic immune-competent and xenogeneic immune-deficient mouse models of colorectal and pancreatic cancer while activating innate and adaptive immunity in the tumor immune microenvironment. Oral administration of ADT-007 prodrug inhibited tumor growth, supporting further development of this novel class of pan-RAS inhibitors for treating RAS-driven cancers. SIGNIFICANCE: ADT-007 is a 1 st -in-class pan-RAS inhibitor with ultra-high potency and unique selectivity for cancer cells with mutant or activated RAS capable of circumventing resistance and activating antitumor immunity. Further development of ADT-007 analogs or prodrugs with oral bioavailability as a generalizable monotherapy or combined with immunotherapy is warranted.

2.
J Ovarian Res ; 15(1): 120, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36324187

ABSTRACT

A leading theory for ovarian carcinogenesis proposes that inflammation associated with incessant ovulation is a driver of oncogenesis. Consistent with this theory, nonsteroidal anti-inflammatory drugs (NSAIDs) exert promising chemopreventive activity for ovarian cancer. Unfortunately, toxicity is associated with long-term use of NSAIDs due to their cyclooxygenase (COX) inhibitory activity. Previous studies suggest the antineoplastic activity of NSAIDs is COX independent, and rather may be exerted through phosphodiesterase (PDE) inhibition. PDEs represent a unique chemopreventive target for ovarian cancer given that ovulation is regulated by cyclic nucleotide signaling. Here we evaluate PDE10A as a novel therapeutic target for ovarian cancer. Analysis of The Cancer Genome Atlas (TCGA) ovarian tumors revealed PDE10A overexpression was associated with significantly worse overall survival for patients. PDE10A expression also positively correlated with the upregulation of oncogenic and inflammatory signaling pathways. Using small molecule inhibitors, Pf-2545920 and a novel NSAID-derived PDE10A inhibitor, MCI-030, we show that PDE10A inhibition leads to decreased ovarian cancer cell growth and induces cell cycle arrest and apoptosis. We demonstrate these pro-apoptotic properties occur through PKA and PKG signaling by using specific inhibitors to block their activity. PDE10A genetic knockout in ovarian cancer cells through CRISP/Cas9 editing lead to decreased cell proliferation, colony formation, migration and invasion, and in vivo tumor growth. We also demonstrate that PDE10A inhibition leads to decreased Wnt-induced ß-catenin nuclear translocation, as well as decreased EGF-mediated activation of RAS/MAPK and AKT pathways in ovarian cancer cells. These findings implicate PDE10A as novel target for ovarian cancer chemoprevention and treatment.


Subject(s)
Ovarian Neoplasms , beta Catenin , Female , Humans , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , beta Catenin/genetics , beta Catenin/metabolism , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , ras Proteins/metabolism
3.
Cancer Prev Res (Phila) ; 14(11): 995-1008, 2021 11.
Article in English | MEDLINE | ID: mdl-34584001

ABSTRACT

Previous studies have reported that phosphodiesterase 10A (PDE10) is overexpressed in colon epithelium during early stages of colon tumorigenesis and essential for colon cancer cell growth. Here we describe a novel non-COX inhibitory derivative of the anti-inflammatory drug, sulindac, with selective PDE10 inhibitory activity, ADT 061. ADT 061 potently inhibited the growth of colon cancer cells expressing high levels of PDE10, but not normal colonocytes that do not express PDE10. The concentration range by which ADT 061 inhibited colon cancer cell growth was identical to concentrations that inhibit recombinant PDE10. ADT 061 inhibited PDE10 by a competitive mechanism and did not affect the activity of other PDE isozymes at concentrations that inhibit colon cancer cell growth. Treatment of colon cancer cells with ADT 061 activated cGMP/PKG signaling, induced phosphorylation of oncogenic ß-catenin, inhibited Wnt-induced nuclear translocation of ß-catenin, and suppressed TCF/LEF transcription at concentrations that inhibit cancer cell growth. Oral administration of ADT 061 resulted in high concentrations in the colon mucosa and significantly suppressed the formation of colon adenomas in the Apc+/min-FCCC mouse model of colorectal cancer without discernable toxicity. These results support the development of ADT 061 for the treatment or prevention of adenomas in individuals at risk of developing colorectal cancer. PREVENTION RELEVANCE: PDE10 is overexpressed in colon tumors whereby inhibition activates cGMP/PKG signaling and suppresses Wnt/ß-catenin transcription to selectively induce apoptosis of colon cancer cells. ADT 061 is a novel PDE10 inhibitor that shows promising cancer chemopreventive activity and tolerance in a mouse model of colon cancer.


Subject(s)
Colonic Neoplasms , beta Catenin , Animals , Carcinogenesis , Colon/pathology , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Colonic Neoplasms/prevention & control , Mice , Phosphodiesterase Inhibitors/pharmacology , Sulindac/pharmacology
4.
Comp Med ; 63(4): 367-72, 2013 Aug.
Article in English | MEDLINE | ID: mdl-24209974

ABSTRACT

We report a case of brain abscess after craniotomy and the placement of a recording chamber for electrophysiologic records in an adult rhesus macaque (Macaca mulatta) enrolled in visual research. Approximately 2 wk after surgery, the macaque presented with nonspecific gastrointestinal signs and showed no evidence of fever, neurologic deficits, increased intracranial pressure, suggestive alterations in the CBC, or abnormal changes in the recording chamber. The macaque responded to symptomatic and antibiotic treatment and showed no behavioral or abnormal clinical signs for 3 wk before collapsing suddenly. The macaque was euthanized, and pathologic evaluation revealed a large brain abscess immediately under the original craniotomy.


Subject(s)
Brain Abscess/veterinary , Craniotomy/veterinary , Implants, Experimental/adverse effects , Monkey Diseases/pathology , Animals , Brain/microbiology , Brain/pathology , Brain Abscess/etiology , Brain Abscess/pathology , Craniotomy/adverse effects , Implants, Experimental/microbiology , Macaca mulatta , Monkey Diseases/microbiology
5.
FEBS Lett ; 585(19): 3120-5, 2011 Oct 03.
Article in English | MEDLINE | ID: mdl-21907199

ABSTRACT

Mesd is a specialized chaperone for Wnt co-receptor low-density lipoprotein receptor-related protein-5 (LRP5) and LRP6, which contain four ß-propeller/epidermal growth factor modules, named E1 to E4 from N- to C-terminal, in their extracellular domains. Herein, we demonstrated that recombinant Mesd protein is a general Wnt inhibitor that blocks Wnt/ß-catenin signaling induced not only by LRP6 E1-E2-binding Wnts but also by LRP6 E3-E4-binding Wnts. We also found that Mesd suppressed Wnt/ß-catenin signaling induced by Wnt1 in prostate cancer PC-3 cells, and inhibited tumor growth in PC-3 xenograft model. Our results indicate that Mesd is a universal inhibitor of Wnt/LRP signaling on the cell surface.


Subject(s)
Ligands , Low Density Lipoprotein Receptor-Related Protein-5/metabolism , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Molecular Chaperones/metabolism , Signal Transduction/physiology , Wnt Proteins/antagonists & inhibitors , Wnt Proteins/metabolism , Animals , Cell Line, Tumor , HEK293 Cells , Humans , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Male , Mice , Molecular Chaperones/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Transplantation, Heterologous , Wnt Proteins/genetics , beta Catenin/metabolism
6.
Nat Biotechnol ; 20(11): 1118-23, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12368813

ABSTRACT

Shewanella oneidensis is an important model organism for bioremediation studies because of its diverse respiratory capabilities, conferred in part by multicomponent, branched electron transport systems. Here we report the sequencing of the S. oneidensis genome, which consists of a 4,969,803-base pair circular chromosome with 4,758 predicted protein-encoding open reading frames (CDS) and a 161,613-base pair plasmid with 173 CDSs. We identified the first Shewanella lambda-like phage, providing a potential tool for further genome engineering. Genome analysis revealed 39 c-type cytochromes, including 32 previously unidentified in S. oneidensis, and a novel periplasmic [Fe] hydrogenase, which are integral members of the electron transport system. This genome sequence represents a critical step in the elucidation of the pathways for reduction (and bioremediation) of pollutants such as uranium (U) and chromium (Cr), and offers a starting point for defining this organism's complex electron transport systems and metal ion-reducing capabilities.


Subject(s)
Gene Expression Regulation, Bacterial , Genome, Bacterial , Sequence Analysis, DNA , Sequence Analysis, Protein , Shewanella/genetics , Shewanella/metabolism , Amino Acid Sequence , Biodegradation, Environmental , Cell Respiration , Electron Transport , Gene Expression , Metals/metabolism , Molecular Sequence Data , Open Reading Frames/genetics , Organic Chemicals/metabolism , Oxidation-Reduction , Plasmids , Proteomics/methods , Sequence Alignment/methods , Shewanella/classification , Shewanella/pathogenicity , Species Specificity , Water Pollutants, Chemical/metabolism , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...