Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 31(7): 1995-2012, 2022 04.
Article in English | MEDLINE | ID: mdl-35119154

ABSTRACT

Conservation benefits from incorporating genomics to explore the impacts of population declines, inbreeding, loss of genetic variation and hybridization. Here we use the near-extinct Mariana Islands reedwarbler radiation to showcase how ancient DNA approaches can allow insights into the population dynamics of extinct species and threatened populations for which historical museum specimens or material with low DNA yield (e.g., scats, feathers) are the only sources for DNA. Despite their having paraphyletic mitochondrial DNA (mtDNA), nuclear single nucleotide polymorphisms (SNPs) support the distinctiveness of critically endangered Acrocephalus hiwae and the other three species in the radiation that went extinct between the 1960s and 1990s. Two extinct species, A. yamashinae and A. luscinius, were deeply divergent from each other and from a third less differentiated lineage containing A. hiwae and extinct A. nijoi. Both mtDNA and SNPs suggest that the two isolated populations of A. hiwae from Saipan and Alamagan Islands are sufficiently distinct to warrant subspecies recognition and separate conservation management. We detected no significant differences in genetic diversity or inbreeding between Saipan and Alamagan, nor strong signatures of geographical structuring within either island. However, the implications of possible signatures of inbreeding in both Saipan and Alamagan, and long-term population declines in A. hiwae that pre-date modern anthropogenic threats require further study with denser population sampling. Our study highlights the value that conservation genomics studies of island radiations have as windows onto the possible future for the world's biota as climate change and habitat destruction increasingly fragment their ranges and contribute to rapid declines in population abundances.


Subject(s)
DNA, Mitochondrial , Genomics , Animals , Conservation of Natural Resources , DNA, Mitochondrial/genetics , Endangered Species , Genetic Variation/genetics , Geography , Inbreeding , Phylogeny
2.
Genes (Basel) ; 10(3)2019 03 01.
Article in English | MEDLINE | ID: mdl-30832245

ABSTRACT

The Mariana Crow, or Åga (Corvus kubaryi), is a critically endangered species (IUCN -International Union for Conservation of Nature), endemic to the islands of Guam and Rota in the Mariana Archipelago. It is locally extinct on Guam, and numbers have declined dramatically on Rota to a historical low of less than 55 breeding pairs throughout the island in 2013. Because of its extirpation on Guam and population decline on Rota, it is of critical importance to assess the genetic variation among individuals to assist ongoing recovery efforts. We conducted a population genomics analysis comparing the Guam and Rota populations and studied the genetic structure of the Rota population. We used blood samples from five birds from Guam and 78 birds from Rota. We identified 145,552 candidate single nucleotide variants (SNVs) from a genome sequence of an individual from Rota and selected a subset of these to develop an oligonucleotide in-solution capture assay. The Guam and Rota populations were genetically differentiated from each other. Crow populations sampled broadly across their range on Rota showed significant genetic structuring ⁻ a surprising result given the small size of this island and the good flight capabilities of the species. Knowledge of its genetic structure will help improve management strategies to help with its recovery.


Subject(s)
Crows/classification , Metagenomics/methods , Whole Genome Sequencing/methods , Animals , Conservation of Natural Resources , Crows/genetics , Endangered Species , Evolution, Molecular , Female , Guam , High-Throughput Nucleotide Sequencing , Male , Phylogeography , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...