Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Food Funct ; 12(12): 5399-5406, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-33988204

ABSTRACT

Inhibition of glucose uptake in the intestine through sodium-dependent glucose transporter 1 (SGLT1) or glucose transporter 2 (GLUT2) may be beneficial in controlling postprandial blood glucose levels. Gallic acid and ten of its derivatives were identified in the active fractions of Terminalia chebula Retz. fructus immaturus, a popular edible plant fruit which has previously been associated with the inhibition of glucose uptake. Gallic acid derivatives (methyl gallate, ethyl gallate, pentyl gallate, 3,4,6-tri-O-galloyl-ß-d-glucose, and corilagin) showed good glucose transport inhibition with inhibitory rates of 72.1 ± 1.6%, 71.5 ± 1.4%, 79.9 ± 1.2%, 44.7 ± 1.2%, and 75.0 ± 0.7% at 5 mM d-glucose and/or 56.3 ± 2.3, 52.1 ± 3.2%, 70.2 ± 1.7%, 15.6 ± 1.6%, and 37.1 ± 0.8% at 25 mM d-glucose. However, only 3,4,6-tri-O-galloyl-ß-d-glucose and corilagin were confirmed GLUT2-specific inhibitors. Whilst some tea flavonoids demonstrated minimal glucose transport inhibition, their gallic acid derivatives strongly inhibited transport effect with GLUT2 specificity. This suggests that gallic acid structures are crucial for glucose transport inhibition. Plants, such as T. chebula, which contain high levels of gallic acid and its derivatives, show promise as natural functional ingredients for inclusion in foods and drinks designed to control postprandial glucose levels.


Subject(s)
Biological Transport/drug effects , Gallic Acid/chemistry , Gallic Acid/pharmacology , Glucose/metabolism , Plant Extracts/pharmacology , Postprandial Period/drug effects , Caco-2 Cells , Flavonoids , Fruit/chemistry , Gallic Acid/analogs & derivatives , Glucose Transporter Type 2 , Glucosides , Humans , Hydrolyzable Tannins , Intestines , Sodium-Glucose Transporter 1 , Terminalia/drug effects
2.
J Agric Food Chem ; 66(12): 3137-3145, 2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29533635

ABSTRACT

Foods of high carbohydrate content such as sucrose or starch increase postprandial blood glucose concentrations. The glucose absorption system in the intestine comprises two components: sodium-dependent glucose transporter-1 (SGLT1) and glucose transporter 2 (GLUT2). Here five sappanin-type (SAP) homoisoflavonoids were identified as novel potent GLUT2 inhibitors, with three of them isolated from the fibrous roots of Polygonatum odoratum (Mill.) Druce. SAP homoisolflavonoids had a stronger inhibitory effect on 25 mM glucose transport (41.6 ± 2.5, 50.5 ± 7.6, 47.5 ± 1.9, 42.6 ± 2.4, and 45.7 ± 4.1% for EA-1, EA-2, EA-3, MOA, and MOB) than flavonoids (19.3 ± 2.2, 11.5 ± 3.7, 16.4 ± 2.4, 5.3 ± 1.0, 3.7 ± 2.2, and 18.1 ± 2.4% for apigenin, luteolin, quercetin, naringenin, hesperetin, and genistein) and phloretin (28.1 ± 1.6%) at 15 µM. SAP homoisoflavonoids and SGLT1 inhibitors were found to synergistically inhibit the uptake of glucose using an in vitro model comprising Caco-2 cells. This observed new mechanism of the glucose-lowering action of P. odoratum suggests that SAP homoisoflavonoids and their combination with flavonoid monoglucosides show promise as naturally functional ingredients for inclusion in foods and drinks designed to control postprandial glucose levels.


Subject(s)
Flavonoids/pharmacology , Glucose Transporter Type 2/antagonists & inhibitors , Glucose/metabolism , Hypoglycemic Agents/pharmacology , Plant Extracts/pharmacology , Polygonatum/chemistry , Biological Transport/drug effects , Caco-2 Cells , Flavonoids/chemistry , Glucose Transporter Type 2/genetics , Glucose Transporter Type 2/metabolism , Humans , Hypoglycemic Agents/chemistry , Plant Extracts/chemistry , Sodium-Glucose Transporter 1/antagonists & inhibitors , Sodium-Glucose Transporter 1/genetics , Sodium-Glucose Transporter 1/metabolism
3.
Food Chem ; 220: 517-526, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-27855934

ABSTRACT

This is the first study to use chemometric methods to differentiate among 21 cultivars of Camellia sinensis from China and between leaves harvested at different times of the year using 30 compounds implicated in the taste and quality of tea. Unique patterns of catechin derivatives were observed among cultivars and across harvest seasons. C. sinensis var. pubilimba (You 510) differed from the cultivars of C. sinensis var. sinensis, with higher levels of theobromine, (+)-catechin, gallocatechin, gallocatechin gallate and theasinensin B, and lower levels of (-)-epicatechin, (-)-epigallocatechin (EGC) and (-)-epigallocatechin gallate (EGCG), respectively. Three cultivars of C. sinensis var. sinensis, Fuyun 7, Qiancha 7 and Zijuan contained significantly more caffeoylquinic acids than others cultivars. A Linear Discriminant Analysis model based on the abundance of 12 compounds was able to discriminate amongst all 21 tea cultivars. Harvest time impacted the abundance of EGC, theanine and afzelechin gallate.


Subject(s)
Camellia sinensis/metabolism , Glutamates/analysis , Phenols/analysis , Plant Extracts/analysis , Seasons , Xanthines/analysis , Camellia sinensis/growth & development , Catechin/analogs & derivatives , Catechin/analysis , China , Flavonoids/analysis , Plant Leaves/chemistry
4.
Br J Nutr ; 113(4): 574-84, 2015 Feb 28.
Article in English | MEDLINE | ID: mdl-25661189

ABSTRACT

There is evidence for health benefits from 'Palaeolithic' diets; however, there are a few data on the acute effects of rationally designed Palaeolithic-type meals. In the present study, we used Palaeolithic diet principles to construct meals comprising readily available ingredients: fish and a variety of plants, selected to be rich in fibre and phyto-nutrients. We investigated the acute effects of two Palaeolithic-type meals (PAL 1 and PAL 2) and a reference meal based on WHO guidelines (REF), on blood glucose control, gut hormone responses and appetite regulation. Using a randomised cross-over trial design, healthy subjects were given three meals on separate occasions. PAL2 and REF were matched for energy, protein, fat and carbohydrates; PAL1 contained more protein and energy. Plasma glucose, insulin, glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP) and peptide YY (PYY) concentrations were measured over a period of 180 min. Satiation was assessed using electronic visual analogue scale (EVAS) scores. GLP-1 and PYY concentrations were significantly increased across 180 min for both PAL1 (P= 0·001 and P< 0·001) and PAL2 (P= 0·011 and P= 0·003) compared with the REF. Concomitant EVAS scores showed increased satiety. By contrast, GIP concentration was significantly suppressed. Positive incremental AUC over 120 min for glucose and insulin did not differ between the meals. Consumption of meals based on Palaeolithic diet principles resulted in significant increases in incretin and anorectic gut hormones and increased perceived satiety. Surprisingly, this was independent of the energy or protein content of the meal and therefore suggests potential benefits for reduced risk of obesity.


Subject(s)
Diet, Paleolithic , Glucagon-Like Peptide 1/metabolism , Meals , Peptide YY/metabolism , Satiety Response , Up-Regulation , Adolescent , Adult , Blood Glucose/analysis , Cohort Studies , Cross-Over Studies , Diet, Paleolithic/adverse effects , Glucagon-Like Peptide 1/blood , Humans , Incretins/blood , Incretins/metabolism , Insulin/blood , Insulin/metabolism , Insulin Resistance , Insulin Secretion , Male , Patient Compliance , Peptide YY/blood , Postprandial Period , Time Factors , Young Adult
5.
J Am Diet Assoc ; 109(5): 830-5, 2009 May.
Article in English | MEDLINE | ID: mdl-19394469

ABSTRACT

OBJECTIVE: Optimal bone mass in early adulthood is achieved through appropriate diet and lifestyle, thereby protecting against osteoporosis and risk of bone fracture in later life. Calcium and vitamin D are essential to build adequate bones, but calcium intakes of many population groups do not meet dietary reference values. In addition, changes in dietary patterns are exacerbating the problem, thereby emphasizing the important role of calcium-rich food products. We have designed a calcium-fortified ice cream formulation that is lower in fat than regular ice cream and could provide a useful source of additional dietary calcium. Calcium absorption from two different ice cream formulations was determined in young adults and compared with milk. SUBJECTS/SETTING: Sixteen healthy volunteers (25 to 45 years of age), recruited from the general public of The Netherlands, participated in a randomized, reference-controlled, double-blind cross-over study in which two test products and milk were consumed with a light standard breakfast on three separate occasions: a standard portion of ice cream (60 g) fortified with milk minerals and containing a low level (3%) of butter fat, ice cream (60 g) fortified with milk minerals and containing a typical level (9%) of coconut oil, and reduced-fat milk (1.7% milk fat) (200 mL). Calcium absorption was measured by the dual-label stable isotope technique. STATISTICAL ANALYSIS: Effects on calcium absorption were evaluated by analysis of variance. RESULTS: Fractional absorption of calcium from the 3% butterfat ice cream, 9% coconut oil ice cream, and milk was 26%+/-8%, 28%+/-5%, and 31%+/-9%, respectively, and did not differ significantly (P=0.159). CONCLUSIONS: Results indicate that calcium bioavailability in the two calcium-fortified ice cream formulations used in this study is as high as milk, indicating that ice cream may be a good vehicle for delivery of calcium.


Subject(s)
Bone Density Conservation Agents/pharmacokinetics , Bone and Bones/drug effects , Calcium, Dietary/pharmacokinetics , Food, Fortified , Ice Cream/analysis , Adult , Analysis of Variance , Animals , Biological Availability , Bone Density , Bone and Bones/metabolism , Calcium/deficiency , Calcium/metabolism , Cross-Over Studies , Dietary Fats/administration & dosage , Double-Blind Method , Female , Humans , Intestinal Absorption/drug effects , Male , Middle Aged , Milk/chemistry , Nutritional Requirements , Osteoporosis/prevention & control , Vitamin D/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...