Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 8(8): e71323, 2013.
Article in English | MEDLINE | ID: mdl-23967191

ABSTRACT

Psychiatric diseases, including schizophrenia, bipolar disorder and major depression, are projected to lead global disease burden within the next decade. Pharmacotherapy, the primary--albeit often ineffective--treatment method, has remained largely unchanged over the past 50 years, highlighting the need for novel target discovery and improved mechanism-based treatments. Here, we examined in wild type mice the impact of chronic, systemic treatment with Compound 60 (Cpd-60), a slow-binding, benzamide-based inhibitor of the class I histone deacetylase (HDAC) family members, HDAC1 and HDAC2, in mood-related behavioral assays responsive to clinically effective drugs. Cpd-60 treatment for one week was associated with attenuated locomotor activity following acute amphetamine challenge. Further, treated mice demonstrated decreased immobility in the forced swim test. These changes are consistent with established effects of clinical mood stabilizers and antidepressants, respectively. Whole-genome expression profiling of specific brain regions (prefrontal cortex, nucleus accumbens, hippocampus) from mice treated with Cpd-60 identified gene expression changes, including a small subset of transcripts that significantly overlapped those previously reported in lithium-treated mice. HDAC inhibition in brain was confirmed by increased histone acetylation both globally and, using chromatin immunoprecipitation, at the promoter regions of upregulated transcripts, a finding consistent with in vivo engagement of HDAC targets. In contrast, treatment with suberoylanilide hydroxamic acid (SAHA), a non-selective fast-binding, hydroxamic acid HDAC 1/2/3/6 inhibitor, was sufficient to increase histone acetylation in brain, but did not alter mood-related behaviors and had dissimilar transcriptional regulatory effects compared to Cpd-60. These results provide evidence that selective inhibition of HDAC1 and HDAC2 in brain may provide an epigenetic-based target for developing improved treatments for mood disorders and other brain disorders with altered chromatin-mediated neuroplasticity.


Subject(s)
Affect/drug effects , Behavior, Animal/drug effects , Brain/drug effects , Chromatin/drug effects , Gene Expression Regulation/drug effects , Histone Deacetylase Inhibitors/pharmacology , Mi-2 Nucleosome Remodeling and Deacetylase Complex/antagonists & inhibitors , Acetylation/drug effects , Animals , Benzamides/chemistry , Benzamides/pharmacology , Brain/cytology , Brain/metabolism , Chromatin/genetics , Histone Deacetylase 1/antagonists & inhibitors , Histone Deacetylase 2/antagonists & inhibitors , Histone Deacetylase Inhibitors/chemistry , Histones/metabolism , Lithium/pharmacology , Male , Mice , Mice, Inbred C57BL , Neurons/cytology , Neurons/drug effects , Promoter Regions, Genetic/drug effects , Promoter Regions, Genetic/genetics , Reproducibility of Results , Time Factors , Transcription, Genetic/drug effects
2.
Biol Psychiatry ; 73(7): 683-90, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23237312

ABSTRACT

BACKGROUND: Ankyrin 3 (ANK3) has been strongly implicated as a risk gene for bipolar disorder (BD) by recent genome-wide association studies of patient populations. However, the genetic variants of ANK3 contributing to BD risk and their pathological function are unknown. METHODS: To gain insight into the potential disease relevance of ANK3, we examined the function of mouse Ank3 in the regulation of psychiatric-related behaviors using genetic, neurobiological, pharmacological, and gene-environment interaction (G×E) approaches. Ank3 expression was reduced in mouse brain either by viral-mediated RNA interference or through disruption of brain-specific Ank3 in a heterozygous knockout mouse. RESULTS: RNA interference of Ank3 in hippocampus dentate gyrus induced a highly specific and consistent phenotype marked by decreased anxiety-related behaviors and increased activity during the light phase, which were attenuated by chronic treatment with the mood stabilizer lithium. Similar behavioral alterations of reduced anxiety and increased motivation for reward were also exhibited by Ank3+/- heterozygous mice compared with wild-type Ank3+/+ mice. Remarkably, the behavioral traits of Ank3+/- mice transitioned to depression-related features after chronic stress, a trigger of mood episodes in BD. Ank3+/- mice also exhibited elevated serum corticosterone, suggesting that reduced Ank3 expression is associated with elevated stress reactivity. CONCLUSIONS: This study defines a new role for Ank3 in the regulation of psychiatric-related behaviors and stress reactivity that lends support for its involvement in BD and establishes a general framework for determining the disease relevance of genes implicated by patient genome-wide association studies.


Subject(s)
Ankyrins/genetics , Anxiety Disorders/genetics , Anxiety Disorders/physiopathology , Bipolar Disorder/genetics , Lithium Chloride/pharmacology , Stress, Psychological/genetics , Stress, Psychological/physiopathology , Animals , Ankyrins/physiology , Anxiety Disorders/blood , Anxiety Disorders/drug therapy , Corticosterone/blood , Dentate Gyrus/physiology , Male , Mice , Mice, Knockout , Mice, Transgenic , Stress, Psychological/blood , Stress, Psychological/drug therapy
3.
Neuropsychopharmacology ; 36(7): 1397-411, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21389981

ABSTRACT

Bipolar disorder (BP) is a debilitating psychiatric disorder, affecting ∼2% of the worldwide population, for which the etiological basis, pathogenesis, and neurocircuitry remain poorly understood. Individuals with BP suffer from recurrent episodes of mania and depression, which are commonly treated with the mood stabilizer lithium. However, nearly half of BP patients do not respond adequately to lithium therapy and the clinically relevant mechanisms of lithium for mood stabilization remain elusive. Here, we modeled lithium responsiveness using cellular assays of glycogen synthase kinase 3 (GSK-3) signaling and mood-related behavioral assays in inbred strains of mice that differ in their response to lithium. We found that activating AKT through phosphosrylation of a key regulatory site (Thr308) was associated with lithium response-activation of signaling pathways downstream of GSK-3 in cells and attenuation of mood-related behaviors in mice-and this response was attenuated by selective and direct inhibition of AKT kinase activity. Conversely, the expression of constitutively active AKT1 in both the cellular and behavioral assays conferred lithium sensitivity. In contrast, selective and direct GSK-3 inhibition by the ATP-competitive inhibitor CHIR99021 bypassed the requirement for AKT activation and modulated behavior in both lithium-responsive and non-responsive mouse strains. These results distinguish the mechanism of action of lithium from direct GSK-3 inhibition both in vivo and in vitro, and highlight the therapeutic potential for selective GSK-3 inhibitors in BP treatment.


Subject(s)
Antimanic Agents/therapeutic use , Lithium Chloride/therapeutic use , Mood Disorders/drug therapy , Signal Transduction/drug effects , Amphetamine/adverse effects , Analysis of Variance , Animals , Antimanic Agents/pharmacology , Cell Line, Transformed , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Disease Models, Animal , Drug Administration Routes , Drug Administration Schedule , Drug Interactions , Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Enzymologic/drug effects , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Hippocampus/cytology , Humans , Lithium Chloride/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Mood Disorders/chemically induced , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction/genetics , Transfection/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...