Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 26(7): 106995, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37534135

ABSTRACT

Emerging evidence of species divergent features of astrocytes coupled with the relative inaccessibility of human brain tissue underscore the utility of human pluripotent stem cell (hPSC) technologies for the generation and study of human astrocytes. However, existing approaches for hPSC-astrocyte generation are typically lengthy or require intermediate purification steps. Here, we establish a rapid and highly scalable method for generating functional human induced astrocytes (hiAs). These hiAs express canonical astrocyte markers, respond to pro-inflammatory stimuli, exhibit ATP-induced calcium transients and support neuronal network development. Moreover, single-cell transcriptomic analyses reveal the generation of highly reproducible cell populations across individual donors, mostly resembling human fetal astrocytes. Finally, hiAs generated from a trisomy 21 disease model identify expected alterations in cell-cell adhesion and synaptic signaling, supporting their utility for disease modeling applications. Thus, hiAs provide a valuable and practical resource for the study of basic human astrocyte function and dysfunction in disease.

2.
eNeuro ; 10(5)2023 05.
Article in English | MEDLINE | ID: mdl-37072176

ABSTRACT

SYNGAP1 haploinsufficiency in humans causes intellectual disability (ID). SYNGAP1 is highly expressed in cortical excitatory neurons and, reducing its expression in mice accelerates the maturation of excitatory synapses during sensitive developmental periods, restricts the critical period window for plasticity, and impairs cognition. However, its specific role in interneurons remains largely undetermined. In this study, we investigated the effects of conditional Syngap1 disruption in medial ganglionic eminence (MGE)-derived interneurons on hippocampal interneuron firing properties and excitatory synaptic inputs, as well as on pyramidal cell synaptic inhibition and synaptic integration. We show that conditional Syngap1 disruption in MGE-derived interneurons results in cell-specific impairment of firing properties of hippocampal Nkx2.1 fast-spiking interneurons, with enhancement of their AMPA receptor (AMPAR)-mediated excitatory synaptic inputs but compromised short-term plasticity. In contrast, regular-spiking Nkx2.1 interneurons are largely unaffected. These changes are associated with impaired pyramidal cell synaptic inhibition and enhanced summation of excitatory responses. Unexpectedly, we found that the Syngap1flox allele used in this study contains inverted loxP sites and that its targeted recombination in MGE-derived interneurons induces some cell loss during embryonic development and the reversible inversion of the sequence flanked by the loxP sites in postmitotic cells. Together, these results suggest that Syngap1 plays a role in cell-specific regulation of hippocampal interneuron function and inhibition of pyramidal cells in mice. However, because of our finding that the Syngap1flox allele used in this study contains inverted loxP sites, it will be important to further investigate interneuron function using a different Syngap1 conditional allele.


Subject(s)
Interneurons , Pyramidal Cells , Humans , Mice , Animals , Mice, Transgenic , Interneurons/physiology , Pyramidal Cells/physiology , Hippocampus/metabolism , Recombination, Genetic , ras GTPase-Activating Proteins/genetics , ras GTPase-Activating Proteins/metabolism
3.
Elife ; 122023 04 21.
Article in English | MEDLINE | ID: mdl-37083703

ABSTRACT

Resolving fundamental molecular and functional processes underlying human synaptic development is crucial for understanding normal brain function as well as dysfunction in disease. Based upon increasing evidence of species-divergent features of brain cell types, coupled with emerging studies of complex human disease genetics, we developed the first automated and quantitative high-content synaptic phenotyping platform using human neurons and astrocytes. To establish the robustness of our platform, we screened the effects of 376 small molecules on presynaptic density, neurite outgrowth, and cell viability, validating six small molecules that specifically enhanced human presynaptic density in vitro. Astrocytes were essential for mediating the effects of all six small molecules, underscoring the relevance of non-cell-autonomous factors in synapse assembly and their importance in synaptic screening applications. Bromodomain and extraterminal (BET) inhibitors emerged as the most prominent hit class and global transcriptional analyses using multiple BET inhibitors confirmed upregulation of synaptic gene expression. Through these analyses, we demonstrate the robustness of our automated screening platform for identifying potent synaptic modulators, which can be further leveraged for scaled analyses of human synaptic mechanisms and drug discovery efforts.


Subject(s)
Neurogenesis , Neurons , Humans , Neurogenesis/physiology , Neurons/physiology , Synapses/physiology , Neuronal Outgrowth , Astrocytes
4.
Cell Rep ; 40(10): 111312, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36070702

ABSTRACT

Down syndrome (DS), driven by an extra copy of chromosome 21 (HSA21), and fragile X syndrome (FXS), driven by loss of the RNA-binding protein FMRP, are two common genetic causes of intellectual disability and autism. Based upon the number of DS-implicated transcripts bound by FMRP, we hypothesize that DS and FXS may share underlying mechanisms. Comparing DS and FXS human pluripotent stem cell (hPSC) and glutamatergic neuron models, we identify increased protein expression of select targets and overlapping transcriptional perturbations. Moreover, acute upregulation of endogenous FMRP in DS patient cells using CRISPRa is sufficient to significantly reduce expression levels of candidate proteins and reverse 40% of global transcriptional perturbations. These results pinpoint specific molecular perturbations shared between DS and FXS that can be leveraged as a strategy for target prioritization; they also provide evidence for the functional relevance of previous associations between FMRP targets and disease-implicated genes.


Subject(s)
Down Syndrome , Fragile X Syndrome , Pluripotent Stem Cells , Down Syndrome/metabolism , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Humans , Neurons/metabolism , Pluripotent Stem Cells/metabolism
5.
Nat Commun ; 12(1): 3653, 2021 06 16.
Article in English | MEDLINE | ID: mdl-34135323

ABSTRACT

The Mechanistic Target Of Rapamycin Complex 1 (mTORC1) pathway controls several aspects of neuronal development. Mutations in regulators of mTORC1, such as Tsc1 and Tsc2, lead to neurodevelopmental disorders associated with autism, intellectual disabilities and epilepsy. The correct development of inhibitory interneurons is crucial for functional circuits. In particular, the axonal arborisation and synapse density of parvalbumin (PV)-positive GABAergic interneurons change in the postnatal brain. How and whether mTORC1 signaling affects PV cell development is unknown. Here, we show that Tsc1 haploinsufficiency causes a premature increase in terminal axonal branching and bouton density formed by mutant PV cells, followed by a loss of perisomatic innervation in adult mice. PV cell-restricted Tsc1 haploinsufficient and knockout mice show deficits in social behavior. Finally, we identify a sensitive period during the third postnatal week during which treatment with the mTOR inhibitor Rapamycin rescues deficits in both PV cell innervation and social behavior in adult conditional haploinsufficient mice. Our findings reveal a role of mTORC1 signaling in the regulation of the developmental time course and maintenance of cortical PV cell connectivity and support a mechanistic basis for the targeted rescue of autism-related behaviors in disorders associated with deregulated mTORC1 signaling.


Subject(s)
Interneurons/pathology , Parvalbumins/metabolism , Social Behavior , Tuberous Sclerosis Complex 1 Protein/deficiency , Animals , Autophagy , Axons/drug effects , Axons/pathology , GABAergic Neurons/drug effects , GABAergic Neurons/metabolism , GABAergic Neurons/pathology , Interneurons/drug effects , Interneurons/metabolism , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mutation , Signal Transduction/drug effects , Sirolimus/administration & dosage , Sirolimus/pharmacology , Synapses/drug effects , Synapses/pathology , Time Factors , Tuberous Sclerosis Complex 1 Protein/genetics , Tuberous Sclerosis Complex 1 Protein/metabolism
6.
Elife ; 82019 12 06.
Article in English | MEDLINE | ID: mdl-31808420

ABSTRACT

Experiments on flies suggest that a gain-of-function mechanism in a protein called CSPɑ contributes to the progressive brain disease CLN4.


Subject(s)
Brain Diseases , Diptera , Neuronal Ceroid-Lipofuscinoses , Animals , Humans
7.
J Immunol ; 198(5): 2047-2062, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28148737

ABSTRACT

Preterm birth (PTB) is commonly accompanied by in utero fetal inflammation, and existing tocolytic drugs do not target fetal inflammatory injury. Of the candidate proinflammatory mediators, IL-1 appears central and is sufficient to trigger fetal loss. Therefore, we elucidated the effects of antenatal IL-1 exposure on postnatal development and investigated two IL-1 receptor antagonists, the competitive inhibitor anakinra (Kineret) and a potent noncompetitive inhibitor 101.10, for efficacy in blocking IL-1 actions. Antenatal exposure to IL-1ß induced Tnfa, Il6, Ccl2, Pghs2, and Mpges1 expression in placenta and fetal membranes, and it elevated amniotic fluid IL-1ß, IL-6, IL-8, and PGF2α, resulting in PTB and marked neonatal mortality. Surviving neonates had increased Il1b, Il6, Il8, Il10, Pghs2, Tnfa, and Crp expression in WBCs, elevated plasma levels of IL-1ß, IL-6, and IL-8, increased IL-1ß, IL-6, and IL-8 in fetal lung, intestine, and brain, and morphological abnormalities: e.g., disrupted lung alveolarization, atrophy of intestinal villus and colon-resident lymphoid follicle, and degeneration and atrophy of brain microvasculature with visual evoked potential anomalies. Late gestation treatment with 101.10 abolished these adverse outcomes, whereas Kineret exerted only modest effects and no benefit for gestation length, neonatal mortality, or placental inflammation. In a LPS-induced model of infection-associated PTB, 101.10 prevented PTB, neonatal mortality, and fetal brain inflammation. There was no substantive deviation in postnatal growth trajectory or adult body morphometry after antenatal 101.10 treatment. The results implicate IL-1 as an important driver of neonatal morbidity in PTB and identify 101.10 as a safe and effective candidate therapeutic.


Subject(s)
Brain/immunology , Fetal Development/drug effects , Inflammation/immunology , Interleukin-1beta/immunology , Placenta/immunology , Pregnancy/immunology , Premature Birth/immunology , Animals , Animals, Newborn , Brain/drug effects , Disease Models, Animal , Female , Humans , Inflammation/drug therapy , Inflammation Mediators/metabolism , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Interleukin-1beta/antagonists & inhibitors , Lipopolysaccharides/immunology , Mice , Mice, Inbred C57BL , Peptides/therapeutic use , Placenta/drug effects , Premature Birth/drug therapy
8.
Nat Commun ; 7: 13340, 2016 11 09.
Article in English | MEDLINE | ID: mdl-27827368

ABSTRACT

Haploinsufficiency of the SYNGAP1 gene, which codes for a Ras GTPase-activating protein, impairs cognition both in humans and in mice. Decrease of Syngap1 in mice has been previously shown to cause cognitive deficits at least in part by inducing alterations in glutamatergic neurotransmission and premature maturation of excitatory connections. Whether Syngap1 plays a role in the development of cortical GABAergic connectivity and function remains unclear. Here, we show that Syngap1 haploinsufficiency significantly reduces the formation of perisomatic innervations by parvalbumin-positive basket cells, a major population of GABAergic neurons, in a cell-autonomous manner. We further show that Syngap1 haploinsufficiency in GABAergic cells derived from the medial ganglionic eminence impairs their connectivity, reduces inhibitory synaptic activity and cortical gamma oscillation power, and causes cognitive deficits. Our results indicate that Syngap1 plays a critical role in GABAergic circuit function and further suggest that Syngap1 haploinsufficiency in GABAergic circuits may contribute to cognitive deficits.


Subject(s)
Cognition Disorders/genetics , Cognition/physiology , GABAergic Neurons/physiology , Synapses/physiology , ras GTPase-Activating Proteins/physiology , Animals , Cells, Cultured , Disease Models, Animal , Female , Gene Knockdown Techniques , Haploinsufficiency , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Primary Cell Culture , Synaptic Transmission/physiology , ras GTPase-Activating Proteins/genetics
9.
Hum Mutat ; 34(2): 385-94, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23161826

ABSTRACT

De novo mutations in SYNGAP1, which codes for a RAS/RAP GTP-activating protein, cause nonsyndromic intellectual disability (NSID). All disease-causing point mutations identified until now in SYNGAP1 are truncating, raising the possibility of an association between this type of mutations and NSID. Here, we report the identification of the first pathogenic missense mutations (c.1084T>C [p.W362R], c.1685C>T [p.P562L]) and three novel truncating mutations (c.283dupC [p.H95PfsX5], c.2212_2213del [p.S738X], and (c.2184del [p.N729TfsX31]) in SYNGAP1 in patients with NSID. A subset of these patients also showed ataxia, autism, and a specific form of generalized epilepsy that can be refractory to treatment. All of these mutations occurred de novo, except c.283dupC, which was inherited from a father who is a mosaic. Biolistic transfection of wild-type SYNGAP1 in pyramidal cells from cortical organotypic cultures significantly reduced activity-dependent phosphorylated extracellular signal-regulated kinase (pERK) levels. In contrast, constructs expressing p.W362R, p.P562L, or the previously described p.R579X had no significant effect on pERK levels. These experiments suggest that the de novo missense mutations, p.R579X, and possibly all the other truncating mutations in SYNGAP1 result in a loss of its function. Moreover, our study confirms the involvement of SYNGAP1 in autism while providing novel insight into the epileptic manifestations associated with its disruption.


Subject(s)
Autistic Disorder/genetics , Epilepsy/genetics , Haploinsufficiency , Intellectual Disability/genetics , ras GTPase-Activating Proteins/genetics , Adolescent , Amino Acid Sequence , Autistic Disorder/physiopathology , Blotting, Western , Child , Child, Preschool , Cloning, Molecular , Epilepsy/physiopathology , Exome , Extracellular Signal-Regulated MAP Kinases/genetics , Female , HEK293 Cells , Humans , Intellectual Disability/physiopathology , Male , Molecular Sequence Data , Mutation, Missense , Phenotype , Phosphorylation , Protein Conformation , Sequence Analysis, DNA , Transfection , ras GTPase-Activating Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...