Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 35(24): 3178-89, 2016 06 16.
Article in English | MEDLINE | ID: mdl-26477309

ABSTRACT

Human adenoviruses (HAdV) are used as a model system to investigate tumorigenic processes in mammalian cells where the viral oncoproteins E1A and E1B-55K are absolutely required for oncogenic transformation, because they simultaneously accelerate cell cycle progression and inhibit tumor suppressor proteins such as p53, although the underlying mechanism is still not understood in detail. In our present study, we provide evidence that E1B-55K binding to the PML-NB component Sp100A apparently has an essential role in regulating adenovirus-mediated transformation processes. Specifically, when this E1B-55K/Sp100A complex recruits p53, Sp100A-induced activation of p53 transcriptional activity is effectively abolished. Hence, Sp100A exhibits tumor-suppressive activity, not only by stabilizing p53 transactivation but also by depressing E1A/E1B-55K-mediated transformation. E1B-55K counteracts this suppressive activity, inducing Sp100A SUMOylation and sequestering the modified cellular factor into the insoluble matrix of the nucleus or into cytoplasmic inclusions. These observations provide novel insights into how E1B-55K modulates cellular determinants to maintain growth-promoting activity during oncogenic processes and lytic infection.


Subject(s)
Adenovirus E1B Proteins/physiology , Antigens, Nuclear/metabolism , Autoantigens/metabolism , Cell Transformation, Viral/physiology , Tumor Suppressor Protein p53/metabolism , Adenovirus E1B Proteins/genetics , Cell Transformation, Viral/genetics , Humans , Transcription Factors/metabolism , Transcriptional Activation , Transfection , Tumor Suppressor Protein p53/genetics
2.
Oncogene ; 35(1): 69-82, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-25772236

ABSTRACT

Although modulation of the cellular tumor-suppressor p53 is considered to have the major role in E1A/E1B-55K-mediated tumorigenesis, other promyelocytic leukemia nuclear body (PML-NB)/PML oncogenic domain (POD)-associated factors including SUMO, Mre11, Daxx, as well as the integrity of these nuclear bodies contribute to the transformation process. However, the biochemical consequences and oncogenic alterations of PML-associated E1B-55K by SUMO-dependent PML-IV and PML-V interaction have so far remained elusive. We performed mutational analysis to define a PML interaction motif within the E1B-55K polypeptide. Our results showed that E1B-55K/PML binding is not required for p53, Mre11 and Daxx interaction. We also observed that E1B-55K lacking subnuclear PML localization because of either PML-IV or PML-V-binding deficiency was no longer capable of mediating E1B-55K-dependent SUMOylation of p53, inhibition of p53-mediated transactivation or efficiently transforming primary rodent cells. These results together with the observation that E1B-55K-dependent SUMOylation of p53 is required for efficient cell transformation, provides evidence for the idea that the SUMO ligase activity of the E1B-55K viral oncoprotein is intimately linked to its growth-promoting oncogenic activities.


Subject(s)
Adenoviridae/genetics , Cell Transformation, Viral/genetics , Leukemia, Promyelocytic, Acute/genetics , Leukemia, Promyelocytic, Acute/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Proteins/metabolism , Adenovirus E1B Proteins/genetics , Adenovirus E1B Proteins/metabolism , Animals , HEK293 Cells , Humans , Mutation , Nuclear Proteins/genetics , Promyelocytic Leukemia Protein , Protein Isoforms , Rats , Transcription Factors/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Proteins/genetics
3.
Oncogene ; 32(13): 1626-37, 2013 Mar 28.
Article in English | MEDLINE | ID: mdl-22614022

ABSTRACT

Since the discovery of post-translational modification (PTM) by the small ubiquitin-related modifiers (SUMOs), a multitude of proteins have been described to be reversibly modified, resulting in the alteration of several cellular pathways. Interestingly, various pathogens gain access to this modification system, although the molecular mechanisms and functional consequences are barely understood. We show here that the adenoviral oncoprotein E1B-55K is a substrate of the SUMO conjugation system, which is directly linked to its C-terminal phosphorylation. This regulative connection is indispensable for modulation of the tumor suppressor p53/chromatin-remodeling factor Daxx by E1B-55K and, consequently, its oncogenic potential in primary mammalian cells. In virus infection, E1B-55K PTMs are necessary for localization to viral transcription/replication sites. Furthermore, we identify the E2 enzyme Ubc9 as an interaction partner of E1B-55K, providing a possible molecular explanation for SUMO-dependent modulation of cellular target proteins. In conclusion, these results for the first time provide evidence how E1B-55K PTMs are regulated and subsequently facilitate exploitation of the host cell SUMOylation machinery.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Protein Kinases/physiology , Sumoylation/physiology , Viral Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/physiology , Adenoviridae/genetics , Adenoviridae/metabolism , Amino Acid Sequence , Animals , Animals, Newborn , Cell Transformation, Neoplastic/genetics , Cells, Cultured , Co-Repressor Proteins , HEK293 Cells , Humans , Models, Biological , Molecular Chaperones , Molecular Sequence Data , Nuclear Proteins/metabolism , Nuclear Proteins/physiology , Phosphorylation/genetics , Phosphorylation/physiology , Phylogeny , Protein Kinases/metabolism , Protein Processing, Post-Translational/genetics , Protein Processing, Post-Translational/physiology , Rats , Receptor Cross-Talk/physiology , Sequence Homology, Amino Acid , Sumoylation/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/physiology , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...