Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ACS Nano ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979949

ABSTRACT

The direct generation of conducting paths within an insulating surface represents a conceptually unexplored approach to single-layer electrical conduction that opens vistas for exciting research and applications fundamentally different from those based on specific layered materials. Herein we report surface channels with single-layer -COOH functionality patterned on insulating n-octadecyltrichlorosilane monolayers on silicon that exhibit unusual ionic-electronic conduction when equipped with ion-releasing silver electrodes. The strong dependence of charge transport in such channels on their lateral dimensions (nanosize, macro-size), the type (p, n) and resistivity (doping level) of the underlying silicon substrate, the nature of the insulating spacer layer between the conducting channel and the silicon surface, and the postpatterning chemical manipulation of channel's -COOH functionality allows designing channels with variable resistivities, ranging from that of a practical insulator to some unexpectedly low values. The unusually low resistivities displayed by channels with nanometric widths and micrometer-millimeter lengths are attributed primarily to enhanced electronic transport within ultrathin nanowire-like silver metal films formed along their conductive paths. Function-structure correlations derived from a comprehensive analysis of electrical, atomic force microscopy, and Fourier transform infrared spectral data suggest an unconventional mode of conduction in these channels, which has yet to be elucidated, apparently involving coupled ionic-electronic transport mediated and enhanced by interfacial electrical interactions with charge carriers located outside the conducting channel and separated from those carrying the measured current. These intriguing findings hint at effects akin to Coulomb pairing in the proposed mechanisms of excitonic superconductivity in interfacial nanosystems structurally related to the present metalized surface channels.

2.
Nanoscale Adv ; 6(13): 3450-3461, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38933859

ABSTRACT

Mesoporous silica nanoparticles hosting guest molecules are a versatile tool with applications in various fields such as life and environmental sciences. Current commonly applied pore blocking strategies are not universally applicable and are often not robust enough to withstand harsh ambient conditions (e.g. geothermal). In this work, a titania layer is utilized as a robust pore blocker, with a test-case where it is used for the encapsulation of fluorescent dyes. The layer is formed by a hydrolysis process of a titania precursor in an adapted microemulsion system and demonstrates effective protection of both the dye payload and the silica core from disintegration under otherwise damaging external conditions. The produced dye-MSN@TiO2 particles are characterized by means of electron microscopy, elemental mapping, ζ-potential, X-ray diffraction (XRD), nitrogen adsorption, Thermogravimetric analysis (TGA), fluorescence and absorbance spectroscopy and Fourier Transform Infrared Spectroscopy - Total Attenuated Reflectance (FT-IR ATR). Finally, the performance of the titania-encapsulated MSNs is demonstrated in long-term aqueous stability and in flow-through experiments, where owing to improved dispersion encapsulated dye results in improved flow properties compared to free dye properties. This behavior exemplifies the potential advantage of carrier-borne marker molecules over free dye molecules in applications where accessibility or targeting are a factor, thus this encapsulation method increases the variety of fields of application.

3.
Sci Rep ; 10(1): 11422, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32651432

ABSTRACT

The inaccessibility of geological reservoirs, both for oil and gas production or geothermal usage, makes detection of reservoir properties and conditions a key problem in the field of reservoir engineering, including for the development of geothermal power plants. Herein, an approach is presented for the development of messenger nanoparticles for the determination of reservoir conditions, with a proof of concept example of temperature detection under controlled laboratory conditions. Silica particles are synthesized with a two-layer architecture, an inner enclosed core and an outer porous shell, each doped with a different fluorescent dye to create a dual emission system. Temperature detection happens by a threshold temperature-triggered irreversible release of the outer dye, thus changing the fluorescence signal of the particles. The reported particle system consequently enables a direct, reliable and fast way to determine reservoir temperature. It also displays a sharp threshold for accurate sensing and allows detection at concentration ranges as low as few nanograms of nanoparticles per milliliter.

4.
Nano Lett ; 19(2): 816-822, 2019 02 13.
Article in English | MEDLINE | ID: mdl-30694068

ABSTRACT

Within the field of switchable surfaces, azobenzenes are an extensively studied group of molecules, known for reversibly changing conformation upon illumination with light of different wavelengths. Relying on the ability of the molecules to change properties and structure as a response to external stimuli, they have been incorporated in various devices, such as molecular switches and motors. In contrast to the well-documented switching by light irradiation, we report the discovery of mechanically triggered switching of self-assembled azobenzene monolayers, resulting in changes of surface wettability, adhesion, and friction. This mechanically induced cis-trans isomerization is triggered either locally and selectively by AFM or macroscopically by particle impact. The process is optically reversible, enabling consecutive switching cycles. Collective switching behavior was also observed, propagating from the original point of impact in a domino-like manner. Finally, local force application facilitated nondestructive and erasable nanopatterning, the cis-trans nanolithography.

5.
ACS Nano ; 12(10): 9680-9692, 2018 Oct 23.
Article in English | MEDLINE | ID: mdl-30215511

ABSTRACT

Chemical nanopatterning-the deliberate nanoscale modification of the chemical nature of a solid surface-is conveniently realized using organic monolayer coatings to impart well-defined chemical functionalities to selected surface regions of the coated solid. Most monolayer patterning methods, however, exploit destructive processes that introduce topographic as well as other undesired structural and chemical transformations along with the desired surface chemical modification. In particular in electron beam lithography (EBL), organic monolayers have been used mainly as ultrathin resists capable of improving the resolution of patterning via local deposition or removal of material. On the basis of the recent discovery of a class of radiation-induced interfacial chemical transformations confined to the contact surface between two solids, we have advanced a direct, nondestructive EBL approach to chemical nanopatterning-interfacial electron beam lithography (IEBL)-demonstrated here by the e-beam-induced local oxidation of the -CH3 surface moieties of a highly ordered self-assembled n-alkylsilane monolayer to -COOH while fully preserving the monolayer structural integrity and molecular organization. In this conceptually different EBL process, the traditional resist is replaced by a thin film coating that acts as a site-activated reagent/catalyst in the chemical modification of the coated surface, here the top surface of the to-be-patterned monolayer. Structural and chemical transformations induced in the thin film coating and the underlying monolayer upon exposure to the electron beam were elucidated using a semiquantitative surface characterization methodology that combines multimode AFM imaging with postpatterning surface chemical modifications and quantitative micro-FTIR measurements. IEBL offers attractive opportunities in chemical nanopatterning, for example, by enabling the application of the advanced EBL technology to the straightforward nanoscale functionalization of the simplest commonly used organosilane monolayers.

6.
Angew Chem Int Ed Engl ; 55(40): 12366-71, 2016 09 26.
Article in English | MEDLINE | ID: mdl-27611648

ABSTRACT

Effective control of chemistry at interfaces is of fundamental importance for the advancement of methods of surface functionalization and patterning that are at the basis of many scientific and technological applications. A conceptually new type of interfacial chemical transformations has been discovered, confined to the contact surface between two solid materials, which may be induced by exposure to X-rays, electrons or UV light, or by the application of electrical bias. One of the reacting solids is a removable thin film coating that acts as a reagent/catalyst in the chemical modification of the solid surface on which it is applied. Given the diversity of thin film coatings that may be used as solid reagents/catalysts and the lateral confinement options provided by the use of irradiation masks, conductive AFM probes or stamps, and electron beams in such solid-phase reactions, this approach is suitable for precise targeting of different desired chemical modifications to predefined surface sites spanning the macro- to nanoscale.

7.
Beilstein J Nanotechnol ; 6: 1763-8, 2015.
Article in English | MEDLINE | ID: mdl-26425428

ABSTRACT

We present a promising first example towards controlling the properties of a self-assembling mineral film by means of the functionality and polarity of a substrate template. In the presented case, a zinc oxide film is deposited by chemical bath deposition on a nearly topography-free template structure composed of a pattern of two self-assembled monolayers with different chemical functionality. We demonstrate the template-modulated morphological properties of the growing film, as the surface functionality dictates the granularity of the growing film. This, in turn, is a key property influencing other film properties such as conductivity, piezoelectric activity and the mechanical properties. A very pronounced contrast is observed between areas with an underlying fluorinated, low energy template surface, showing a much more (almost two orders of magnitude) coarse-grained film with a typical agglomerate size of around 75 nm. In contrast, amino-functionalized surface areas induce the growth of a very smooth, fine-grained surface with a roughness of around 1 nm. The observed influence of the template on the resulting clear contrast in morphology of the growing film could be explained by a contrast in surface adhesion energies and surface diffusion rates of the nanoparticles, which nucleate in solution and subsequently deposit on the functionalized substrate.

8.
Nat Mater ; 14(6): 613-21, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25849368

ABSTRACT

Ionic transport plays a central role in key technologies relevant to energy, and information processing and storage, as well as in the implementation of biological functions in living organisms. Here, we introduce a supramolecular strategy based on the non-destructive chemical patterning of a highly ordered self-assembled monolayer that allows the reproducible fabrication of ion-conducting surface patterns (ion-conducting channels) with top -COOH functional groups precisely definable over the full range of length scales from nanometre to centimetre. The transport of a single layer of selected metal ions and the electrochemical processes related to their motion may thus be confined to predefined surface paths. As a generic solid ionic conductor that can accommodate different mobile ions in the absence of any added electrolyte, these ion-conducting channels exhibit bias-induced competitive transport of different ionic species. This approach offers unprecedented opportunities for the realization of designed ion-conducting systems with nanoscale control, beyond the inherent limitations posed by available ionic materials.

9.
Langmuir ; 31(10): 3242-53, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25705846

ABSTRACT

The preparation of cross-linked nanosheets with 1-2 nm thickness and predefined shape was achieved by lithographic immobilization of trimethacryloyl thioalkanoates onto the surface of Si wafers, which were functionalized with 2-(phenacylthio)acetamido groups via a photoinduced reaction. Subsequent cross-linking via free radical polymerization as well as a phototriggered Diels-Alder reaction under mild conditions on the surface led to the desired nanosheets. Electrospray ionization mass spectrometry (ESI-MS), X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), as well as infrared reflection-absorption spectroscopy (IRRAS) confirmed the success of individual surface-modification and cross-linking reactions. The thickness and lateral size of the cross-linked structures were determined by atomic force microscopy (AFM) for samples prepared on Si wafers functionalized with a self-assembled monolayer of 1H,1H,2H,2H-perfluorodecyl groups bearing circular pores obtained via a polymer blend lithographic approach, which led to the cross-linking reactions occurring in circular nanoareas (diameter of 50-640 nm) yielding an average thickness of 1.2 nm (radical cross-linking), 1.8 nm (radical cross-linking in the presence of 2,2,2-trifluoroethyl methacrylate as a comonomer), and 1.1 nm (photochemical cross-linking) of the nanosheets.


Subject(s)
Nanostructures/chemistry , Nanotechnology/methods , Photochemical Processes , Silicon/chemistry , Acetamides/chemistry , Carboxylic Acids/chemistry , Surface Properties
10.
Beilstein J Nanotechnol ; 3: 134-143, 2012.
Article in English | MEDLINE | ID: mdl-22428104

ABSTRACT

Contact electrochemical transfer of silver from a metal-film stamp (parallel process) or a metal-coated scanning probe (serial process) is demonstrated to allow site-selective metallization of monolayer template patterns of any desired shape and size created by constructive nanolithography. The precise nanoscale control of metal delivery to predefined surface sites, achieved as a result of the selective affinity of the monolayer template for electrochemically generated metal ions, provides a versatile synthetic tool en route to the bottom-up assembly of electric nanocircuits. These findings offer direct experimental support to the view that, in electrochemical metal deposition, charge is carried across the electrode-solution interface by ion migration to the electrode rather than by electron transfer to hydrated ions in solution.

11.
Langmuir ; 27(13): 8562-75, 2011 Jul 05.
Article in English | MEDLINE | ID: mdl-21661737

ABSTRACT

Experimental evidence is presented, demonstrating the feasibility of a surface-patterning strategy that allows stepwise electrochemical generation and subsequent in situ metallization of patterns of carboxylic acid functions on the outer surfaces of highly ordered OTS monolayers assembled on silicon or on a flexible polymeric substrate. The patterning process can be implemented serially with scanning probes, which is shown to allow nanoscale patterning, or in a parallel stamping configuration here demonstrated on micrometric length scales with granular metal film stamps sandwiched between two monolayer-coated substrates. The metal film, consisting of silver deposited by evaporation through a patterned contact mask on the surface of one of the organic monolayers, functions as both a cathode in the printing of the monolayer patterns and an anodic source of metal in their subsequent metallization. An ultrathin water layer adsorbed on the metal grains by capillary condensation from a humid atmosphere plays the double role of electrolyte and a source of oxidizing species in the pattern printing process. It is shown that control over both the direction of pattern printing and metal transfer to one of the two monolayer surfaces can be accomplished by simple switching of the polarity of the applied voltage bias. Thus, the patterned metal film functions as a consumable "floating" stamp capable of two-way (forward-backward) electrochemical transfer of both information and matter between the contacting monolayer surfaces involved in the process. This rather unusual electrochemical behavior, resembling the electrochemical switching in nanoionic devices based on the transport of ions in solid ionic-electronic conductors, is derived from the nanoscale thickness of the water layer acting as an electrolyte and the bipolar (cathodic-anodic) nature of the water-coated metal grains in the metal film. The floating stamp concept introduced in this report paves the way to a series of unprecedented capabilities in surface patterning, which are particularly relevant to nanofabrication by chemical means and the engineering of a new class of molecular nanoionic systems.

12.
Langmuir ; 25(24): 13984-4001, 2009 Dec 15.
Article in English | MEDLINE | ID: mdl-19835384

ABSTRACT

Monolayer self-assembly (MSA) was discovered owing to the spectacular liquid repellency (lyophobicity) characteristic of typical self-assembling monolayers of long tail amphiphiles, which facilitates a straightforward visualization of the MSA process without the need of any sophisticated analytical equipment. It is this remarkable property that allows precise control of the self-assembly of discrete, well-defined monolayers, and it was the alternation of lyophobicity and lyophilicity (liquid affinity) in a system of monolayer-forming bifunctional organosilanes that allowed the extension of the principle of MSA to the layer-by-layer self-assembly of planed multilayers. On this basis, the possibility of generating at will patterned monolayer surfaces with lyophobic and lyophilic regions paves the way to the engineering of molecular templates for site-defined deposition of materials on a surface via either precise MSA or wetting-driven self-assembly (WDSA), namely, the selective retention of a liquid repelled by the lyophobic regions of the pattern on its lyophilic sites. Highly ordered organosilane monolayer and thicker layer-by-layer assembled structures are shown to be ideally suited for this purpose. Examples are given of novel WDSA and MSA processes, such as guided deposition by WDSA on lyophobic-lyophilic monolayer and bilayer template patterns at elevated temperatures, from melts and solutions that solidify upon cooling to the ambient temperature, and the possible extension of constructive nanolithography to thicker layer-by-layer assembled films, which paves the way to three-dimensional (3D) template patterns made of readily available monofunctional n-alkyl silanes only. It is further shown how WDSA may contribute to MSA on nanoscale template features as well as how combined MSA and WDSA modes of surface assembly may lead to composite surface architectures exhibiting rather surprising new properties. Finally, a critical evaluation is offered of the scope, advantages, and limitations of MSA and WDSA in the bottom-up fabrication of surface structures on variable length scales from nano to macro.

SELECTION OF CITATIONS
SEARCH DETAIL
...