Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 701: 134652, 2020 Jan 20.
Article in English | MEDLINE | ID: mdl-31734490

ABSTRACT

Municipal solid waste (MSW) is one of the issues associated with the growth of economic and urban population. The aim of this study is to develop an integrated design of waste management systems in support of a Circular Economy by P-graph (a bipartite graphical optimisation tool) as an effective decision support tool. The case study considers four MSW compositions based on different country income levels. Solving the P-graph model identifies the most suitable treatment approaches, considering the economic balance between the main operating cost, type, yield, quality of products, as well as the GHG emission (externality cost). The identification of near-optimal solutions by P-graph is useful in dealing with the trade-offs between conflicting objectives, e.g. local policy and practical implementation, that are difficult to monetise. For a lower-income country, the optimal solution includes a combination of at source separation, recycling, incineration (heat, electricity), anaerobic digestion (biofuel, digestate) and the landfill. It avoids an estimated 411 kg CO2eq/t of processed MSW and achieves a potential profit of 42 €/t of processed MSW. The optimisation generally favours mechanical biological treatment as the country income level rises, which affects the composition of the MSW. The relative prices of biofuel, electricity and heat (>20%) cause a significant impact on the highest-ranking treatment structure and overall profit. This study shows that the developed framework by P-graph is an effective tool for MSW systems planning. For future study, localised data inputs can be fed into the proposed framework for a customised solution and economic feasibility assessment.

2.
Bioprocess Biosyst Eng ; 36(9): 1199-203, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23142845

ABSTRACT

The determination of reaction pathways is one of the most important functions that should be performed in exploring the kinetics of catalyzed chemical reactions or biochemical reactions, the latter being generally catalyzed by enzymes. It is proven that the terms, "type-I extreme pathway" and "structurally minimal pathway", both introduced to characterize the kinetics of a catalyzed reaction are equivalent. These two terms are based on two distinct methodologies, one mainly rooted in convex analysis and the other in graph theory. The equivalence promises further even more effective methods for reaction-pathway identification by synergistic integration of existing ones.


Subject(s)
Models, Biological
3.
Metab Eng ; 7(3): 182-200, 2005 May.
Article in English | MEDLINE | ID: mdl-15885617

ABSTRACT

Cell robustness and complexity have been recognized as unique features of biological systems. Such robustness and complexity of metabolic-reaction systems can be explored by discovering, or identifying, the multiple flux distributions (MFD) and redundant pathways that lead to a given external state; however, this is exceedingly cumbersome to accomplish. It is, therefore, highly desirable to establish an effective computational method for their identification, which, in turn, gives rise to a novel insight into the cellular function. An effective approach is proposed for complementarily identifying MFD in metabolic flux analysis and multiple metabolic pathways (MMP) in structural pathway analysis. This approach judiciously integrates flux balance analysis (FBA) based on linear programming and the graph-theoretic method for determining reaction pathways. A single metabolic pathway, with the concomitant flux distribution and the overall reaction manifesting itself as the desired phenotype under some environmental conditions, is determined by FBA from the initial candidate sequence of metabolic reactions. Subsequently, the graph-theoretic method recovers all feasible MMP and the corresponding MFD. The approach's efficacy is demonstrated by applying it to the in silico Escherichia coli model under various culture conditions. The resultant MMP and MFD attaining a unique external state reveal the surprising adaptability and robustness of the intricate cellular network as a key to cell survival against environmental or genetic changes. These results indicate that the proposed approach would be useful in facilitating drug discovery.


Subject(s)
Algorithms , Basal Metabolism/physiology , Escherichia coli Proteins/metabolism , Escherichia coli/physiology , Gene Expression Regulation/physiology , Models, Biological , Signal Transduction/physiology , Computer Simulation , Multienzyme Complexes/metabolism
4.
Biotechnol Prog ; 20(5): 1518-27, 2004.
Article in English | MEDLINE | ID: mdl-15458338

ABSTRACT

Manufacturing butanol, ethanol, and acetone through grain fermentation has been attracting increasing research interest. In the production of these chemicals from fermentation, the cost of product recovery constitutes the major portion of the total production cost. Developing cost-effective flowsheets for the downstream processing is, therefore, crucial to enhancing the economic viability of this manufacturing method. The present work is concerned with the synthesis of such a process that minimizes the cost of the downstream processing. At the outset, a wide variety of processing equipment and unit operations, i.e., operating units, is selected for possible inclusion in the process. Subsequently, the exactly defined superstructure with minimal complexity, termed maximal structure, is constructed from these operating units with the rigorous and highly efficient graph-theoretic method for process synthesis based on process graphs (P-graphs). Finally, the optimal and near-optimal flowsheets in terms of cost are identified.


Subject(s)
Acetone/economics , Algorithms , Bioreactors/economics , Butanols/economics , Edible Grain/economics , Ethanol/economics , Industrial Microbiology/economics , Models, Economic , Acetone/metabolism , Biochemistry/economics , Biochemistry/methods , Bioreactors/microbiology , Butanols/metabolism , Clostridium acetobutylicum/physiology , Computer Simulation , Edible Grain/microbiology , Ethanol/metabolism , Industrial Microbiology/methods , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...