Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag ; 143: 95-104, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35240451

ABSTRACT

Research on bioconversion based on insects is intensifying as it addresses the problem of reducing and reusing food and industrial waste. To reach this goal, we need to find more means of pairing waste to insects. With this goal, brewers' spent grains (BSG) - a food waste of the brewing industry - paired with the oleaginous biomass of the thraustochytrid Schizochytrium limacinum cultivated on crude glycerol - a major waste of biodiesel production - were successfully used to grow Hermetia illucens larvae. Combining BSG and S. limacinum in the diet in an attempt to design the lipid profile of H. illucens larvae to contain a higher percentage of omega-3 fatty acids is novel. Insect larvae were grown on three different substrates: i) standard diet for Diptera (SD), ii) BSG, and iii) BSG + 10% S. limacinum biomass. The larvae and substrates were analyzed for fatty acid composition and larval growth was measured until 25% of insects reached the prepupal stage. Our data showed that including omega-3-rich S. limacinum biomass in the BSG substrate promoted an increase in larval weight compared to larvae fed on SD or BSG substrates. Furthermore, it was possible, albeit in a limited way, to incorporate omega-3 fatty acids, principally docosahexaenoic acid (DHA) from BSG + S. limacinum substrate containing 20% of DHA into the larval fat (7% DHA). However, H. illucens with this level of DHA may not be suitable if the aim is to get larvae with high omega-3 lipids to feed carnivorous fish.


Subject(s)
Diptera , Fatty Acids, Omega-3 , Refuse Disposal , Animal Feed/analysis , Animals , Bioaccumulation , Biomass , Diptera/chemistry , Industrial Waste , Larva/chemistry
2.
Microb Biotechnol ; 15(3): 985-995, 2022 03.
Article in English | MEDLINE | ID: mdl-34289233

ABSTRACT

Biorefineries have a pivotal role in the bioeconomy scenario for the transition from fossil-based processes towards more sustainable ones relying on renewable resources. Lignocellulose is a prominent feedstock since its abundance and relatively low cost. Microorganisms are often protagonists of biorefineries, as they contribute both to the enzymatic degradation of lignocellulose complex polymers and to the fermentative conversion of the hydrolyzed biomasses into fine and bulk chemicals. Enzymes have therefore become crucial for the development of sustainable biorefineries, being able to provide nutrients to cells from lignocellulose. Enzymatic hydrolysis can be performed by a portfolio of natural enzymes that degrade lignocellulose, often combined into cocktails. As enzymes can be deployed in different operative settings, such as separate hydrolysis and fermentation (SHF) or simultaneous saccharification and fermentation (SSF), their characteristics need to be combined with microbial ones to maximize the process. We therefore reviewed how the optimization of lignocellulose enzymatic hydrolysis can ameliorate bioethanol production when Saccharomyces cerevisiae is used as cell factory. Expanding beyond biofuels, enzymatic cocktail optimization can also be pivotal to unlock the potential of non-Saccharomyces yeasts, which, thanks to broader substrate utilization, inhibitor resistance and peculiar metabolism, can widen the array of feedstocks and products of biorefineries.


Subject(s)
Ethanol , Saccharomyces cerevisiae , Biofuels , Biomass , Ethanol/metabolism , Fermentation , Hydrolysis , Lignin/metabolism , Saccharomyces cerevisiae/metabolism
3.
Article in English | MEDLINE | ID: mdl-33525450

ABSTRACT

In the context of the global need to move towards circular economies, microbial cell factories can be employed thanks to their ability to use side-stream biomasses from the agro-industrial sector to obtain additional products. The valorization of residues allows for better and complete use of natural resources and, at the same time, for the avoidance of waste management to address our needs. In this work, we focused our attention on the microbial valorization of cinnamon waste material after polyphenol extraction (C-PEW) (Cinnamomum verum J.Presl), generally discarded without any additional processing. The sugars embedded in C-PEW were released by enzymatic hydrolysis, more compatible than acid hydrolysis with the subsequent microbial cultivation. We demonstrated that the yeast Rhodosporidium toruloides was able to grow and produce up to 2.00 (±0.23) mg/L of carotenoids in the resulting hydrolysate as a sole carbon and nitrogen source despite the presence of antimicrobial compounds typical of cinnamon. To further extend the potential of our finding, we tested other fungal cell factories for growth on the same media. Overall, these results are opening the possibility to develop separate hydrolysis and fermentation (SHF) bioprocesses based on C-PEW and microbial biotransformation to obtain high-value molecules.


Subject(s)
Carotenoids , Cinnamomum zeylanicum , Fermentation , Rhodotorula , Waste Products
4.
Biotechnol Biofuels ; 13: 47, 2020.
Article in English | MEDLINE | ID: mdl-32190112

ABSTRACT

BACKGROUND: As the circular economy advocates a near total waste reduction, the industry has shown an increased interest toward the exploitation of various residual biomasses. The origin and availability of biomass used as feedstock strongly affect the sustainability of biorefineries, where it is converted in energy and chemicals. Here, we explored the valorization of Camelina meal, the leftover residue from Camelina sativa oil extraction. In fact, in addition to Camelina meal use as animal feed, there is an increasing interest in further valorizing its macromolecular content or its nutritional value. RESULTS: Camelina meal hydrolysates were used as nutrient and energy sources for the fermentation of the carotenoid-producing yeast Rhodosporidium toruloides in shake flasks. Total acid hydrolysis revealed that carbohydrates accounted for a maximum of 31 ± 1.0% of Camelina meal. However, because acid hydrolysis is not optimal for subsequent microbial fermentation, an enzymatic hydrolysis protocol was assessed, yielding a maximum sugar recovery of 53.3%. Separate hydrolysis and fermentation (SHF), simultaneous saccharification and fermentation (SSF), and SSF preceded by presaccharification of Camelina meal hydrolysate produced 5 ± 0.7, 16 ± 1.9, and 13 ± 2.6 mg/L of carotenoids, respectively. Importantly, the presence of water-insoluble solids, which normally inhibit microbial growth, correlated with a higher titer of carotenoids, suggesting that the latter could act as scavengers. CONCLUSIONS: This study paves the way for the exploitation of Camelina meal as feedstock in biorefinery processes. The process under development provides an example of how different final products can be obtained from this side stream, such as pure carotenoids and carotenoid-enriched Camelina meal, can potentially increase the initial value of the source material. The obtained data will help assess the feasibility of using Camelina meal to generate high value-added products.

5.
Yeast ; 36(1): 23-34, 2019 01.
Article in English | MEDLINE | ID: mdl-30006991

ABSTRACT

Pab1, the major poly (A) binding protein of the yeast Saccharomyces cerevisiae, is involved in many intracellular functions associated with mRNA metabolism, such as mRNA nuclear export, deadenylation, translation initiation and termination. Pab1 consists of four RNA recognition motifs (RRM), a proline-rich domain (P) and a carboxy-terminal (C) domain. Due to its modular structure, Pab1 can simultaneously interact with poly (A) tails and different proteins that regulate mRNA turnover and translation. Furthermore, Pab1 also influences cell physiology under stressful conditions by affecting the formation of quinary assemblies and stress granules, as well as by stabilizing specific mRNAs to allow translation re-initiation after stress. The main goal of this review is to correlate the structural complexity of this protein with the multiplicity of its functions.


Subject(s)
Gene Expression Regulation, Fungal , Poly(A)-Binding Proteins/chemistry , Poly(A)-Binding Proteins/metabolism , RNA, Messenger/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Poly(A)-Binding Proteins/genetics , Protein Binding , Saccharomyces cerevisiae/physiology , Saccharomyces cerevisiae Proteins/genetics
6.
Sci Rep ; 5: 18318, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26658950

ABSTRACT

When exploited as cell factories, Saccharomyces cerevisiae cells are exposed to harsh environmental stresses impairing titer, yield and productivity of the fermentative processes. The development of robust strains therefore represents a pivotal challenge for the implementation of cost-effective bioprocesses. Altering master regulators of general cellular rewiring represents a possible strategy to evoke shaded potential that may accomplish the desirable features. The poly(A) binding protein Pab1, as stress granules component, was here selected as the target for obtaining widespread alterations in mRNA metabolism, resulting in stress tolerant phenotypes. Firstly, we demonstrated that the modulation of Pab1 levels improves robustness against different stressors. Secondly, the mutagenesis of PAB1 and the application of a specific screening protocol on acetic acid enriched medium allowed the isolation of the further ameliorated mutant pab1 A60-9. These findings pave the way for a novel approach to unlock industrially promising phenotypes through the modulation of a post-transcriptional regulatory element.


Subject(s)
Adaptation, Biological , Phenotype , Poly(A)-Binding Protein I/metabolism , Saccharomyces cerevisiae/metabolism , Stress, Physiological , Acetic Acid/metabolism , Gene Expression , Hot Temperature , Mutation , Poly(A)-Binding Protein I/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Saccharomyces cerevisiae/genetics , Stress, Physiological/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...