Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Micromachines (Basel) ; 15(6)2024 May 22.
Article in English | MEDLINE | ID: mdl-38930648

ABSTRACT

MEMS devices are more and more commonly used as sensors, actuators, and microfluidic devices in different fields like electronics, opto-electronics, and biomedical engineering. Traditional fabrication technologies cannot meet the growing demand for device miniaturisation and fabrication time reduction, especially when customised devices are required. That is why additive manufacturing technologies are increasingly applied to MEMS. In this review, attention is focused on the Italian scenario in regard to 3D-printed MEMS, studying the techniques and materials used for their fabrication. To this aim, research has been conducted as follows: first, the commonly applied 3D-printing technologies for MEMS manufacturing have been illustrated, then some examples of 3D-printed MEMS have been reported. After that, the typical materials for these technologies have been presented, and finally, some examples of their application in MEMS fabrication have been described. In conclusion, the application of 3D-printing techniques, instead of traditional processes, is a growing trend in Italy, where some exciting and promising results have already been obtained, due to these new selected technologies and the new materials involved.

2.
Front Bioeng Biotechnol ; 12: 1346660, 2024.
Article in English | MEDLINE | ID: mdl-38646009

ABSTRACT

Several diseases affect the alveoli, and the efficacy of medical treatments and pharmaceutical therapies is hampered by the lack of pre-clinical models able to recreate in vitro the diseases. Microfluidic devices, mimicking the key structural and compositional features of the alveoli, offer several advantages to medium and high-throughput analysis of new candidate therapies. Here, we developed an alveolus-on-a-chip recapitulating the microanatomy of the physiological tissue by including the epithelium, the fibrous interstitial layer and the capillary endothelium. A PDMS device was obtained assembling a top layer and a bottom layer obtained by replica molding. A polycaprolactone/gelatin (PCL-Gel) electrospun membrane was included within the two layers supporting the seeding of 3 cell phenotypes. Epithelial cells were grown on a fibroblast-laden collagen hydrogel located on the top side of the PCL-Gel mats while endothelial cells were seeded on the basolateral side of the membrane. The innovative design of the microfluidic device allows to replicate both cell-cell and cell-extracellular matrix interactions according to the in vivo cell arrangement along with the establishment of physiologically relevant air-liquid interface conditions. Indeed, high cell viability was confirmed for up to 10 days and the formation of a tight endothelial and epithelial barrier was assessed by immunofluorescence assays.

3.
Materials (Basel) ; 16(24)2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38138817

ABSTRACT

Modifying material properties within a specific spatial region is a pivotal stage in the fabrication of microelectronic devices. Laser annealing emerges as a compelling technology, offering precise control over the crystalline structure of semiconductor materials and facilitating the activation of doping ions in localized regions. This obviates the necessity for annealing the entire wafer or device. The objective of this review is to comprehensively investigate laser annealing processes specifically targeting the crystallization of amorphous silicon (Si) and silicon carbide (SiC) samples. Silicon finds extensive use in diverse applications, including microelectronics and solar cells, while SiC serves as a crucial material for developing components designed to operate in challenging environments or high-power integrated devices. The review commences with an exploration of the underlying theory and fundamentals of laser annealing techniques. It then delves into an analysis of the most pertinent studies focused on the crystallization of these two semiconductor materials.

4.
Biosensors (Basel) ; 13(7)2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37504137

ABSTRACT

The global COVID-19 pandemic has had severe consequences from the social and economic perspectives, compelling the scientific community to focus on the development of effective diagnostics that can combine a fast response and accurate sensitivity/specificity performance. Presently available commercial antigen-detecting rapid diagnostic tests (Ag-RDTs) are very fast, but still face significant criticisms, mainly related to their inability to amplify the protein signal. This translates to a limited sensitive outcome and, hence, a reduced ability to hamper the spread of SARS-CoV-2 infection. To answer the urgent need for novel platforms for the early, specific and highly sensitive detection of the virus, this paper deals with the use of organic electrochemical transistors (OECTs) as very efficient ion-electron converters and amplifiers for the detection of spike proteins and their femtomolar concentration. The electrical response of the investigated OECTs was carefully analyzed, and the changes in the parameters associated with the transconductance (i.e., the slope of the transfer curves) in the gate voltage range between 0 and 0.3 V were found to be more clearly correlated with the spike protein concentration. Moreover, the functionalization of OECT-based biosensors with anti-spike and anti-nucleocapside proteins, the major proteins involved in the disease, demonstrated the specificity of these devices, whose potentialities should also be considered in light of the recent upsurge of the so-called "long COVID" syndrome.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , COVID-19/diagnosis , Spike Glycoprotein, Coronavirus , Pandemics , SARS-CoV-2 , Transistors, Electronic , Proteins
5.
Polymers (Basel) ; 15(12)2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37376303

ABSTRACT

Renewable energy-based technologies and increasing IoT (Internet of Things) objects population necessarily require proper energy storage devices to exist. In the view of customized and portable devices, Additive Manufacturing (AM) techniques offer the possibility to fabricate 2D to 3D features for functional applications. Among the different AM techniques extensively explored to produce energy storage devices, direct ink writing is one of the most investigated, despite the poor achievable resolution. Herein, we present the development and characterization of an innovative resin which can be employed in a micrometric precision stereolithography (SL) 3D printing process for the fabrication of a supercapacitor (SC). Poly(3,4-ethylenedioxythiophene) (PEDOT), a conductive polymer, was mixed with poly(ethylene glycol) diacrylate (PEGDA), to get a printable and UV curable conductive composite material. The 3D printed electrodes were electrically and electrochemically investigated in an interdigitated device architecture. The electrical conductivity of the resin falls within the range of conductive polymers with 200 mS/cm and the 0.68 µWh/cm2 printed device energy density falls within the literature range.

6.
Sensors (Basel) ; 22(13)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35808284

ABSTRACT

Platelets are emerging as a promising source of blood biomarkers for several pathologies, including cancer. New automated techniques for easier manipulation of platelets in the context of lab-on-a-chips could be of great support for liquid biopsy. Here, several polymeric materials were investigated for their behavior in terms of adhesion and activation of human platelets. Polymeric materials were selected among the most used in microfabrication (PDMS, PMMA and COC) and commercial and home-made resins for 3D printing technology with the aim to identify the most suitable for the realization of microdevices for human platelets isolation and analysis. To visualize adherent platelets and their activation state scanning, electron microscopy was used, while confocal microscopy was used for evaluating platelets' features. In addition, atomic force microscopy was employed to further study platelets adherent to the polymeric materials. Polymers were divided in two main groups: the most prone to platelet adhesion and materials that cause few or no platelets to adhere. Therefore, different polymeric materials could be identified as suitable for the realization of microdevices aimed at capturing human platelets, while other materials could be employed for the fabrication of microdevices or parts of microdevices for the processing of platelets, without loss on surfaces during the process.


Subject(s)
Blood Platelets , Platelet Adhesiveness , Adsorption , Biocompatible Materials , Humans , Liquid Biopsy , Microscopy, Electron, Scanning , Platelet Adhesiveness/physiology , Polymers
7.
Nanomaterials (Basel) ; 11(1)2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33406608

ABSTRACT

We report on the preparation and stereolithographic 3D printing of a resin based on the composite between a poly(ethylene glycol) diacrylate (PEGDA) host matrix and a poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) filler, and the related cumulative volatile organic compounds' (VOCs) adsorbent properties. The control of all the steps for resin preparation and printing through morphological (SEM), structural (Raman spectroscopy) and functional (I/V measurements) characterizations allowed us to obtain conductive 3D objects of complex and reproducible geometry. These systems can interact with chemical vapors in the long term by providing a consistent and detectable variation of their structural and conductive characteristics. The materials and the manufacture protocol here reported thus propose an innovative and versatile technology for VOCs monitoring systems based on cumulative adsorption effects.

8.
Sci Rep ; 10(1): 13335, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32770035

ABSTRACT

Rapid Prototyping (RP) promises to induce a revolutionary impact on how the objects can be produced and used in industrial manufacturing as well as in everyday life. Over the time a standard technique as the 3D Stereolithography (SL) has become a fundamental technology for RP and Additive Manufacturing (AM), since it enables the fabrication of the 3D objects from a cost-effective photocurable resin. Efforts to obtain devices more complex than just a mere aesthetic simulacre, have been spent with uncertain results. The multidisciplinary nature of such manufacturing technique furtherly hinders the route to the fabrication of complex devices. A good knowledge of the bases of material science and engineering is required to deal with SL technological, characterization and testing aspects. In this framework, our study aims to reveal a new approach to obtain RP of complex devices, namely Organic Electro-Chemical Transistors (OECTs), by SL technique exploiting a resin composite based on the conductive poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) and the photo curable Poly(ethylene glycol) diacrylate (PEGDA). A comprehensive study is presented, starting from the optimization of composite resin and characterization of its electrochemical properties, up to the 3D OECTs printing and testing. Relevant performances in biosensing for dopamine (DA) detection using the 3D OECTs are reported and discussed too.

9.
Polymers (Basel) ; 11(2)2019 Feb 09.
Article in English | MEDLINE | ID: mdl-30960275

ABSTRACT

Stereolithography 3D printing is today recognized as an effective rapid prototyping technique in the field of polymeric materials, which represents both the strengths and the weaknesses of this technique. The strengths relate to their easy handling and the low energy required for processing, which allow for the production of structures down to the sub-micrometric scale. The weaknesses are a result of the relatively poor mechanical properties. Unfortunately, the choice of the right material is not sufficient, as the printing parameters also play a crucial role. For this reason, it is important to deepen and clarify the effect of different printing conditions on final product characteristics. In this paper, the behavior of commercial Standard Blend (ST Blend) acrylic resin printed with stereolithography (SL) apparatus is reported, investigating the influence of printing parameters on both the tensile properties of the printed parts and the build accuracy. Twenty-four samples were printed under different printing conditions, then dimensional analyses and tensile tests were performed. It was possible to find out the optimum printing setup to obtain the best result in terms of mechanical resistance and printing accuracy for this kind of resin. Finally, a micrometric spring was printed under the optimal conditions to demonstrate the possibility of printing accurate and tiny parts with the commercial and inexpensive STBlend resin.

10.
Materials (Basel) ; 12(8)2019 Apr 25.
Article in English | MEDLINE | ID: mdl-31027275

ABSTRACT

This work aims to show the feasibility of an innovative approach for the manufacturing of organic-based devices with a true three-dimensional and customizable structure that is made possible by plastic templates, fabricated by additive manufacturing methods, and coated by conducting organic thin films. Specifically, a three-dimensional prototype based on a polyamide structure covered by poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) using the dip-coating technique demonstrated a multifunctional character. The prototype is indeed able to operate both as a three-terminal device showing the typical response of organic electrochemical transistors (OECTs), with a higher amplification performance with respect to planar (2D) all-PEDOT:PSS OECTs, and as a two-terminal device able to efficiently implement a resistive sensing of water vaporization and perspiration, showing performances at least comparable to that of state-of-art resistive humidity sensors based on pristine PEDOT:PSS. To our knowledge, this is the first reported proof-of-concept of a true 3D structured OECT, obtained by exploiting a Selective laser sintering approach that, though simple in terms of 3D layout, paves the way for the integration of sensors based on OECTs into three-dimensional objects in various application areas.

SELECTION OF CITATIONS
SEARCH DETAIL
...