Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Publication year range
1.
Sci Adv ; 6(34)2020 Aug.
Article in English | MEDLINE | ID: mdl-32937366

ABSTRACT

High-refractive index nanostructured dielectrics have the ability to locally enhance electromagnetic fields with low losses while presenting high third-order nonlinearities. In this work, we exploit these characteristics to achieve efficient ultrafast all-optical modulation in a crystalline gallium phosphide (GaP) nanoantenna through the optical Kerr effect (OKE) and two-photon absorption (TPA) in the visible/near-infrared range. We show that an individual GaP nanodisk can yield differential reflectivity modulations of up to ~40%, with characteristic modulation times between 14 and 66 fs, when probed at the anapole excitation (AE). Numerical simulations reveal that the AE represents a unique condition where both the OKE and TPA contribute with the same modulation sign, maximizing the response. These findings highly outperform previous reports on sub-100-fs all-optical switching from resonant nanoscale dielectrics, which have demonstrated modulation depths no larger than 0.5%, placing GaP nanoantennas as a promising choice for ultrafast all-optical modulation at the nanometer scale.

2.
Nano Lett ; 16(2): 1428-34, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26814800

ABSTRACT

Ultrashort laser pulses impinging on a plasmonic nanostructure trigger a highly dynamic scenario in the interplay of electronic relaxation with lattice vibrations, which can be experimentally probed via the generation of coherent phonons. In this Letter, we present studies of hypersound generation in the range of a few to tens of gigahertz on single gold plasmonic nanoantennas, which have additionally been subjected to predesigned mechanical constraints via silica bridges. Using these hybrid gold/silica nanoantennas, we demonstrate experimentally and via numerical simulations how mechanical constraints allow control over their vibrational mode spectrum. Degenerate pump-probe techniques with double modulation are performed in order to detect the small changes produced in the probe transmission by the mechanical oscillations of these single nanoantennas.

3.
Mater Sci Eng C Mater Biol Appl ; 58: 97-102, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26478291

ABSTRACT

A new architecture for a biosensor is proposed using a glassy carbon electrode (GCE) modified with hemoglobin (Hb) and silver nanoparticles (AgNPs) encapsulated in poly(amidoamine) dendrimer (PAMAM). The biosensors were characterized using ultraviolet-visible spectroscopy, ζ-potential and cyclic voltammetry to investigate the interactions between Hb, AgNPs and the PAMAM film. The biosensor exhibited a well-defined cathodic peak attributed to reduction of the Fe(3+) present in the heme group in Hb, as revealed by cyclic voltammetry in the presence of O2. An apparent heterogeneous electron transfer rate of 4.1s(-1) was obtained. The Hb-AgNPs-PAMAM/GCE third generation biosensor was applied in the amperometric determination of hydrogen peroxide over the linear range from 6.0 × 10(-6) to 9.1 × 10(-5)mol L(-1) with a detection limit of 4.9 × 1 0(-6)mol L(-1). The proposed method can be extended to immobilize and evaluate the direct electron transfer of other redox enzymes.


Subject(s)
Biosensing Techniques/methods , Hemoglobins/chemistry , Hydrogen Peroxide/analysis , Metal Nanoparticles/chemistry , Polyamines/chemistry , Silver/chemistry , Electrochemical Techniques , Humans , Hydrogen Peroxide/blood , Limit of Detection , Linear Models
4.
Curitiba; Champagnat; 2004. 116 p.
Monography in Portuguese | Coleciona SUS | ID: biblio-934145
SELECTION OF CITATIONS
SEARCH DETAIL