Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
J Pharm Biomed Anal ; 235: 115599, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37536115

ABSTRACT

Short-chain fatty acids (SCFAs), the end products of gut microbial fermentation of dietary fibers and non-digestible polysaccharides, act as a link between the microbiome, immune system, and inflammatory processes. The importance of accurately quantifying SCFAs in plasma has recently emerged to understand their biological role. In this work, a sensitive and reproducible LC-MS/MS method is reported for SCFAs quantification in three different matrices such as human, rat and mouse plasma via derivatization, using as derivatizing agent O-benzylhydroxylamine (O-BHA), coupled with liquid-liquid extraction. First, the instrumental parameters of the mass spectrometer and then the chromatographic conditions were optimized using previously SCFAs derivatives synthetized and used as standards. After that, the best conditions for derivatization and extraction from plasma were studied and a series of determinations were performed on human, rat, and mouse plasma aliquots to validate the overall method (derivatization, extraction, and LC-MS/MS determination). The method showed good performance in terms of recovery (> 80%), precision (RSD <14%), accuracy (RE < ± 10%) and sensitivity (LOQ of 0.01 µM for acetic, butyric, propionic and isobutyric acid) in all plasma samples. The method thus developed and validated was applied to the quantification of major SCFAs in adult and aged mice, germ-free mice and in germ-free recipient mice subjected to fecal transplant from adult and aged donors. Results highlighted how plasma concentrations of SCFAs are correlated with age further highlighting the importance of developing a method that is reliable for the quantification of SCFAs to study their biological role.


Subject(s)
Gastrointestinal Microbiome , Tandem Mass Spectrometry , Mice , Rats , Humans , Animals , Aged , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Feces/chemistry , Fatty Acids, Volatile/analysis
2.
Int J Mol Sci ; 24(11)2023 Jun 04.
Article in English | MEDLINE | ID: mdl-37298679

ABSTRACT

Epiretinal membranes (ERMs) are sheets of tissue that pathologically develop in the vitreoretinal interface leading to progressive vision loss. They are formed by different cell types and by an exuberant deposition of extracellular matrix proteins. Recently, we reviewed ERMs' extracellular matrix components to better understand molecular dysfunctions that trigger and fuel the onset and development of this disease. The bioinformatics approach we applied delineated a comprehensive overview on this fibrocellular tissue and on critical proteins that could really impact ERM physiopathology. Our interactomic analysis proposed the hyaluronic-acid-receptor cluster of differentiation 44 (CD44) as a central regulator of ERM aberrant dynamics and progression. Interestingly, the interaction between CD44 and podoplanin (PDPN) was shown to promote directional migration in epithelial cells. PDPN is a glycoprotein overexpressed in various cancers and a growing body of evidence indicates its relevant function in several fibrotic and inflammatory pathologies. The binding of PDPN to partner proteins and/or its ligand results in the modulation of signaling pathways regulating proliferation, contractility, migration, epithelial-mesenchymal transition, and extracellular matrix remodeling, all processes that are vital in ERM formation. In this context, the understanding of the PDPN role can help to modulate signaling during fibrosis, hence opening a new line of therapy.


Subject(s)
Epiretinal Membrane , Vitreoretinopathy, Proliferative , Humans , Epiretinal Membrane/metabolism , Epiretinal Membrane/pathology , Extracellular Matrix Proteins , Fibrosis , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , Transcription Factors , Vitreoretinopathy, Proliferative/metabolism
3.
Sci Rep ; 13(1): 4630, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36944737

ABSTRACT

Glioblastoma multiforme (GBM) is the most aggressive primary tumor of the central nervous system and the diagnosis is often dismal. GBM pharmacological treatment is strongly limited by its intracranial location beyond the blood-brain barrier (BBB). While Temozolomide (TMZ) exhibits the best clinical performance, still less than 20% crosses the BBB, therefore requiring administration of very high doses with resulting unnecessary systemic side effects. Here, we aimed at designing new negative temperature-responsive gel formulations able to locally release TMZ beyond the BBB. The biocompatibility of a chitosan-ß-glycerophosphate-based thermogel (THG)-containing mesoporous SiO2 nanoparticles (THG@SiO2) or polycaprolactone microparticles (THG@PCL) was ascertained in vitro and in vivo by cell counting and histological examination. Next, we loaded TMZ into such matrices (THG@SiO2-TMZ and THG@PCL-TMZ) and tested their therapeutic potential both in vitro and in vivo, in a glioblastoma resection and recurrence mouse model based on orthotopic growth of human cancer cells. The two newly designed anticancer formulations, consisting in TMZ-silica (SiO2@TMZ) dispersed in the thermogel matrix (THG@SiO2-TMZ) and TMZ, spray-dried on PLC and incorporated into the thermogel (THG@PCL-TMZ), induced cell death in vitro. When applied intracranially to a resected U87-MG-Red-FLuc human GBM model, THG@SiO2-TMZ and THG@PCL-TMZ caused a significant reduction in the growth of tumor recurrences, when compared to untreated controls. THG@SiO2-TMZ and THG@PCL-TMZ are therefore new promising gel-based local therapy candidates for the treatment of GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Mice , Animals , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/pathology , Heterografts , Silicon Dioxide/pharmacology , Cell Line, Tumor , Neoplasm Recurrence, Local/prevention & control , Neoplasm Recurrence, Local/drug therapy , Brain Neoplasms/pathology , Xenograft Model Antitumor Assays , Drug Resistance, Neoplasm , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use
4.
Cells ; 11(16)2022 08 15.
Article in English | MEDLINE | ID: mdl-36010606

ABSTRACT

Idiopathic epiretinal membranes (iERMs) are fibrocellular sheets of tissue that develop at the vitreoretinal interface. The iERMs consist of cells and an extracellular matrix (ECM) formed by a complex array of structural proteins and a large number of proteins that regulate cell-matrix interaction, matrix deposition and remodelling. Many components of the ECM tend to produce a layered pattern that can influence the tractional properties of the membranes. We applied a bioinformatics approach on a list of proteins previously identified with an MS-based proteomic analysis on samples of iERM to report the interactome of some key proteins. The performed pathway analysis highlights interactions occurring among ECM molecules, their cell receptors and intra- or extracellular proteins that may play a role in matrix biology in this special context. In particular, integrin ß1, cathepsin B, epidermal growth factor receptor, protein-glutamine gamma-glutamyltransferase 2 and prolow-density lipoprotein receptor-related protein 1 are key hubs in the outlined protein-protein cross-talks. A section on the biomarkers that can be found in the vitreous humor of patients affected by iERM and that can modulate matrix deposition is also presented. Finally, translational medicine in iERM treatment has been summed up taking stock of the techniques that have been proposed for pharmacologic vitreolysis.


Subject(s)
Epiretinal Membrane , Epiretinal Membrane/metabolism , Extracellular Matrix/metabolism , Humans , Proteomics/methods , Translational Science, Biomedical , Vitreous Body/metabolism
5.
Lymphat Res Biol ; 20(5): 468-477, 2022 10.
Article in English | MEDLINE | ID: mdl-35041535

ABSTRACT

Secondary lymphedema of the extremities affects millions of people in the world as a common side effect of oncological treatments with heavy impact on every day life of patients and on the health care system. One of the surgical techniques for lymphedema treatment is the creation of a local connection between lymphatic vessels and veins, facilitating drainage of lymphatic fluid into the circulatory system. Successful results, however, rely on using a functional vessel for the anastomosis, and vessel function, in turn, depends on its structure. The structure of lymphatic collecting vessels changes with the progression of lymphedema. They appear initially dilated by excess interstitial fluid entered at capillary level. The number of lymphatic smooth muscle cells in their media then increases in the attempt to overcome the impaired drainage. When lymphatic muscle cells hyperplasia occurs at the expenses of the lumen, vessel patency decreases hampering lymph flow. Finally, collagen fiber accumulation leads to complete occlusion of the lumen rendering the vessel unfit to conduct lymph. Different types of vessels may coexist in the same patient but usually the distal part of the limb contains less affected vessels that are more likely to perform efficient lymphatic-venular anastomosis. Here we review the structure of the lymphatic collecting vessels in health and in lymphedema, focusing on the histopathological changes of the lymphatic vessel wall based on the observations on segments of the vessels used for lymphatic-venular anastomoses.


Subject(s)
Lymphatic Vessels , Lymphedema , Humans , Lymphatic Vessels/pathology , Lymphedema/pathology , Anastomosis, Surgical/methods , Veins/surgery
6.
Invest Ophthalmol Vis Sci ; 62(15): 32, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34967853

ABSTRACT

Purpose: To investigate light-induced modifications of the smooth endoplasmic reticulum of the RPE in primates. Methods: Eyes of three terminally anesthetized Rhesus monkeys were exposed to 5000 lux for 10 minutes or kept in the dark. Transmission electron microscopy and electron tomography were conducted on small fragments of retina sampled from different regions of the retina. Results: RPE cells smooth endoplasmic reticulum shows a previously unknown arrangement characterized by an interlaced compartmental pattern (ICP). Electron tomograms and 3D-modelling demonstrated that the smooth endoplasmic reticulum with an ICP (ICPSER) consisted of four parallel, independent and interwoven networks of tubules arranged as interconnected coiled coils. Its architecture realized a compact labyrinthine structure of tightly packed tubules stabilized by intertubular filamentous tethers. On average, the ICPSER is present in about 14.6% of RPE cells. Although ICPSER was preferentially found in cells located in the peripheral and in the para/perifoveal retina, ICPSER cells significantly increased in number upon light exposure in the para/perifovea and in the fovea. Conclusions: An ICPSER is apparently a unique feature to primate RPE. Its rapid appearance in the area centralis of the retina upon light exposure suggests a function related to the foveate structure of primate retina or to the diurnal habits of animals that may require additional protection from photo-oxidation or enhanced requests of visual pigments regeneration.


Subject(s)
Endoplasmic Reticulum, Smooth/metabolism , Light , Retinal Pigment Epithelium/radiation effects , Animals , Endoplasmic Reticulum, Smooth/ultrastructure , Imaging, Three-Dimensional , Macaca mulatta , Male , Microscopy, Electron, Transmission , Retinal Pigment Epithelium/metabolism
7.
Ann Anat ; 238: 151761, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34139280

ABSTRACT

In Italy, recent legislation (Law No. 10/2020) has tuned regulations concerning the donation of one's postmortem body and tissues for study, training, and scientific research purposes. This study discusses several specific issues to optimise the applicability and effectiveness of such an important, novel regulatory setting. Critical issues arise concerning the learners, the type of training and teaching activities that can be planned, the position of academic anatomy institutes, the role of family members in the donation process, the time frame of the donation process, the eligibility of partial donation, or the simultaneous donation of organs and tissues to patients awaiting transplantation. In particular, a universal time limit for donations (i.e., one year) makes it impossible to plan the long-term use of specific body parts, which could be effectively preserved for the advanced teaching and training of medical students and surgeons. The abovementioned conditions lead to the limited use of corpses, thus resulting in the inefficiency of the whole system of body donation. Overall, the donors' scope for the donation of their body could be best honoured by a more flexible and tuneable approach that can be used on a case-by-case basis. Furthermore, it is deemed necessary to closely monitor the events scheduled for corpses in public nonacademic institutions or private enterprises. This paper presents useful insights from Italian anatomists with the hope of providing inspiration for drafting the regulations. In conclusion, this paper focuses on the critical issues derived from the recently introduced Italian law on the donation and use of the body after death and provides suggestions to lawmakers for future implementations.


Subject(s)
Anatomists , Students, Medical , Tissue and Organ Procurement , Cadaver , Humans , Italy , Tissue Donors
8.
Graefes Arch Clin Exp Ophthalmol ; 259(9): 2559-2571, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33760980

ABSTRACT

PURPOSE: To study the composition of the internal limiting membrane (ILM) of the retina, the extracellular matrix (ECM) of idiopathic epiretinal membranes (iERMs), and the relationships occurring between the two membranes. METHODS: Forty-six iERMs, 24 of them associated with the ILM, were collected and included in this study. The investigation has been carried out by immunofluorescence and confocal microscopy on glutaraldehyde- and osmium-fixed epon-embedded samples and on frozen samples. Sections were double or triple labelled with antibodies against vimentin; collagens I, III, IV, α5(IV), and VI; laminin 1 + 2; laminin α2-, α4-, α5-, ß1-, ß2-, ß3-, γ1-, and γ2-chains; entactin; and fibronectin. RESULTS: iERM thickness was not uniform. Almost 14% of iERMs showed thickenings due to folding of their ECM component under the cell layer. The vitreal side of iERMs was often shorter than the attached ILM. In this case, the ILM resulted folded under the iERM. ILMs contained laminin 111; laminin α2-, α5-, ß1-, ß2-, and γ1-chains; entactin; collagens I; α5(IV); [α1(IV)]2α2(IV); and VI. Laminins, entactin, and α5(IV) were gathered on the retinal half of the ILM, whereas collagens [α1(IV)]2α2(IV) and I were restricted to the vitreal side. Collagen VI was detected on both sides of the ILM. iERMs expressed laminin 111, collagens III, [α1(IV)]2α2(IV) and VI, entactin, and fibronectin. Entactin co-localized with laminins and collagen IV. CONCLUSIONS: Analysis of laminins and collagen chain expression indicates that ILM contains laminin 111 (former laminin 1), laminin 521 (former laminin 11), laminin 211 (former laminin 2), collagen [α1(IV)]2α2(IV), and collagen α3(IV)α4(IV)α5. In contrast, iERMs express only collagen [α1(IV)]2α2(IV) and laminin 111. In addition, both iERMs and ILMs contain entactin. The presence of three major constituents of the basement membranes co-localized together in iERMs is suggestive for a deranged process of basement membrane formation which fails to assemble properly. In view of the many interactions occurring among its proteins, the ECM of either the iERMs or the ILMs can account for their reciprocal adhesiveness. In addition, the peculiar deposition of the ECM observed in some samples of iERM is suggestive for its involvement in the formation of macular puckers.


Subject(s)
Epiretinal Membrane , Basement Membrane , Collagen Type IV , Epiretinal Membrane/diagnosis , Extracellular Matrix , Humans , Laminin , Retina
12.
Microbiome ; 8(1): 140, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33004079

ABSTRACT

BACKGROUND: The gut-brain axis and the intestinal microbiota are emerging as key players in health and disease. Shifts in intestinal microbiota composition affect a variety of systems; however, evidence of their direct impact on cognitive functions is still lacking. We tested whether faecal microbiota transplant (FMT) from aged donor mice into young adult recipients altered the hippocampus, an area of the central nervous system (CNS) known to be affected by the ageing process and related functions. RESULTS: Young adult mice were transplanted with the microbiota from either aged or age-matched donor mice. Following transplantation, characterization of the microbiotas and metabolomics profiles along with a battery of cognitive and behavioural tests were performed. Label-free quantitative proteomics was employed to monitor protein expression in the hippocampus of the recipients. We report that FMT from aged donors led to impaired spatial learning and memory in young adult recipients, whereas anxiety, explorative behaviour and locomotor activity remained unaffected. This was paralleled by altered expression of proteins involved in synaptic plasticity and neurotransmission in the hippocampus. Also, a strong reduction of bacteria associated with short-chain fatty acids (SCFAs) production (Lachnospiraceae, Faecalibaculum, and Ruminococcaceae) and disorders of the CNS (Prevotellaceae and Ruminococcaceae) was observed. Finally, the detrimental effect of FMT from aged donors on the CNS was confirmed by the observation that microglia cells of the hippocampus fimbria, acquired an ageing-like phenotype; on the contrary, gut permeability and levels of systemic and local (hippocampus) cytokines were not affected. CONCLUSION: These results demonstrate that age-associated shifts of the microbiota have an impact on protein expression and key functions of the CNS. Furthermore, these results highlight the paramount importance of the gut-brain axis in ageing and provide a strong rationale to devise therapies aiming to restore a young-like microbiota to improve cognitive functions and the declining quality of life in the elderly. Video Abstract.


Subject(s)
Aging/physiology , Fecal Microbiota Transplantation , Hippocampus/physiology , Memory/physiology , Neuronal Plasticity , Spatial Learning/physiology , Synaptic Transmission , Animals , Male , Mice , Mice, Inbred C57BL , Quality of Life
13.
Invest Ophthalmol Vis Sci ; 61(8): 34, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32716502

ABSTRACT

Purpose: This work was aimed to further characterize cells of idiopathic epiretinal membranes (iERMs). We wanted to determine the contribution of 90-kDa heat shock protein (HSP90) to sustain the transforming growth factor-ß (TGF-ß)-mediated signal transduction pathway in iERM. Methods: Immunofluorescence and confocal microscopy were carried out on deplasticized sections from 36 epiretinal membranes processed for electron microscopy and on frozen sections from five additional samples with antibodies against α-smooth muscle actin (αSMA), vimentin, glial fibrillary acidic protein (GFAP), SMAD2, HSP90α, type-II TGF-ß1 receptor (TßRII), type-I collagen, and type-IV collagen. In addition, Müller MIO-M1 cells were transfected with HSP90 and challenged with TGF-ß1. Results: Double and triple labeling experiments showed that a variable number of TßRII+ cells were present in 94.1% of tested iERMs and they were mostly GFAP-/αSMA+/vimentin+/HSP90α+. In almost half of the cases these cells contained type-I collagen, suggesting their involvement in matrix deposition. HSP90 overexpressing MIO-M1 cells challenged with TGF-ß1 showed increased levels of TßRII, SMAD2, SMAD3, and phosphor-SMAD2. Nuclear SMAD2 staining could be observed in HSP90α+ cells on frozen sections of iERMs. Conclusions: Cells in iERMs that express TßRII are also HSP90α+ and show the antigenic profile of myofibroblast-like cells as they are GFAP-/αSMA+/vimentin+. HSP90α-overexpressing MIO-M1 cells challenged with TGF-ß1 showed an increased activation of the SMAD pathway implying that HSP90α might play a role in sustaining the TGF-ß1-induced fibrotic response of iERM cells.


Subject(s)
Ependymoglial Cells/metabolism , Epiretinal Membrane , HSP90 Heat-Shock Proteins/metabolism , Smad Proteins/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta/metabolism , Ependymoglial Cells/pathology , Epiretinal Membrane/metabolism , Epiretinal Membrane/pathology , Fibrosis/metabolism , Humans , Signal Transduction
14.
J Histochem Cytochem ; 68(2): 149-162, 2020 02.
Article in English | MEDLINE | ID: mdl-31858878

ABSTRACT

Idiopathic epiretinal membranes are sheets of tissue that develop in the vitreoretinal interface. They are formed by cells and extracellular matrix, and they are considered the expression of a fibrotic disorder of the eye. Confocal and immunoelectron microscopy of the extracellular matrix of excised membranes, revealed high contents of type IV collagen. It was distributed within epiretinal membranes in basement membrane-like structures associated with cells and in interstitial deposits. In both cases, type IV collagen was always associated with type I collagen. Col IV was also coupled with Col VI and laminin. At high magnification, type IV collagen immunolabelling was associated with interstitial deposits and showed a reticular appearance due to the intersection of beaded microfilaments. The microfilaments are about 12 nm in diameter with interbead distance of 30-40 nm. Cells of the epiretinal membranes showed intracellular lysosome-like bodies heavily labeled for type IV collagen suggesting an active role in membrane remodeling. Hence, type IV collagen is not necessarily always associated with basement membranes; the molecular interactions that it may develop when not incorporated in basement membranes are still unknown. It is conceivable, however, that they might have implications in the progression of epiretinal membranes and other fibrotic disorders.


Subject(s)
Collagen Type IV/metabolism , Epiretinal Membrane/metabolism , Animals , Humans , Protein Transport
15.
Neuroradiology ; 61(9): 1083-1091, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31332478

ABSTRACT

PURPOSE: Purposes are (1) to measure main radiation parameters and (2) to propose a method to estimate the absorbed doses of internal organs starting from DAP values. Measuring the exposition of internal organs by repeated irradiations on an anthropomorphic phantom with the same settings used in vivo, we could establish correlations between (1) DAP and the dose recorded by a dosimeter placed along the X-ray beam entrance pathway; (2) the dose recorded by the same dosimeter and the absorbed dose in internal organs. METHODS: Forty-four consecutive patients (16 males, 28 females) (mean age 35.4 months) treated at our institution with IAC (216 procedures: 196 via the ICA and 20 into branches of the ECA) were included in this prospective study. IAC was divided into 5 phases. Fluoroscopic time, DAP, and ESD were measured. RESULTS: The mean DAP was 595 ± 445 cGy cm2 and the mean fluoroscopic time was 540 ± 403 s. ESD was on average 9.59 mGy (range 0.8-165 mGy). The absorbed dose was lower than 12.1 mGy in the left retina (the more exposed organ) in 75% of single treatments and lower than 25 mGy in 95% of treatments. In the cases of 3 and 6 sessions, the left retina of 75% of patients absorbed respectively less than 36.3 and 72.7 mGy, whereas the left retina of 95% of patients received less than 75.2 and 150.4 mGy. Other organs were less exposed. CONCLUSION: This paper describes a method of absorbed dose estimation providing ranges used clinically in a single practice and the basis for further prospective studies.


Subject(s)
Antineoplastic Agents/administration & dosage , Fluoroscopy , Radiation Dosage , Retinal Neoplasms/diagnostic imaging , Retinoblastoma/diagnostic imaging , Adolescent , Angiography , Child , Child, Preschool , Female , Humans , Infant , Infusions, Intra-Arterial , Male , Phantoms, Imaging , Prospective Studies , Radiometry , Retinal Neoplasms/drug therapy , Retinoblastoma/drug therapy
16.
Endocrine ; 64(1): 122-129, 2019 04.
Article in English | MEDLINE | ID: mdl-30762153

ABSTRACT

PURPOSE: Anaplastic thyroid carcinoma (ATC) is a rare, highly aggressive form of thyroid cancer (TC) characterized by an aggressive behavior and poor prognosis, resulting in patients' death within a year. Standard treatments, such as chemo and radiotherapy, as well as tyrosine kinase inhibitors, are ineffective for ATC treatment. Cancer immunotherapy is one of the most promising research area in oncology. The PD-1/PD-L1 axis is of particular interest, in light of promising data showing a restoration of host immunity against tumors, with the prospect of long-lasting remissions. METHODS: In this study, we evaluated PD-L1 expression in a large series of TCs (20 cases) showing a progressive dedifferentiation of the thyroid tumor from well differentiated TC to ATC, employing two different antibodies [R&D Systems and VENTANA PD-L1 (SP263) Rabbit Monoclonal Primary Antibody]. We also tested the anti PD-L1 mAb in an in vivo animal model. RESULTS: We found that approximately 70-90% of ATC cases were positive for PD-L1 whereas normal thyroid and differentiated TC were negative. Moreover, all analyzed cases presented immunopositive staining in the endothelium of vessels within or in close proximity to the tumor, while normal thyroid vessels were negative. PD-L1 mAb was also effective in inhibiting ATC growth in an in vivo model. CONCLUSIONS: These data suggest that immunotherapy may be a promising treatment specific for ATC suggesting the need to start with clinical TRIALs.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , B7-H1 Antigen/antagonists & inhibitors , Thyroid Carcinoma, Anaplastic/drug therapy , Thyroid Neoplasms/drug therapy , Adult , Aged , Aged, 80 and over , Animals , Cell Line, Tumor , Female , Humans , Male , Mice , Middle Aged , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Neoplasms/pathology , Treatment Outcome
17.
Front Immunol ; 9: 1177, 2018.
Article in English | MEDLINE | ID: mdl-29896198

ABSTRACT

Interaction between intestinal epithelial cells (IECs) and the underlying immune systems is critical for maintaining intestinal immune homeostasis and mounting appropriate immune responses. We have previously showed that the T helper type 1 (TH1) cytokine IL-12 plays a key role in the delicate immunological balance in the gut and the lack of appropriate levels of IL-12 had important consequences for health and disease, particularly with regard to food allergy. Here, we sought to understand the role of IL-12 in the regulation of lymphoepithelial cross talk and how this interaction affects immune responses locally and systemically. Using a combination of microscopy and flow cytometry techniques we observed that freshly isolated IECs expressed an incomplete, yet functional IL-12 receptor (IL-12R) formed solely by the IL-12Rß2 chain that albeit the lack of the complementary IL-12ß1 chain responded to ex vivo challenge with IL-12. Furthermore, the expression of IL-12Rß2 on IECs is strategically located at the interface between epithelial and immune cells of the lamina propria and using in vitro coculture models and primary intestinal organoids we showed that immune-derived signals were required for the expression of IL-12Rß2 on IECs. The biological relevance of the IEC-associated IL-12Rß2 was assessed in vivo in a mouse model of food allergy characterized by allergy-associated diminished intestinal levels of IL-12 and in chimeric mice that lack the IL-12Rß2 chain on IECs. These experimental models enabled us to show that the antiallergic properties of orally delivered recombinant Lactococcus lactis secreting bioactive IL-12 (rLc-IL12) were reduced in mice lacking the IL-12ß2 chain on IECs. Finally, we observed that the oral delivery of IL-12 was accompanied by the downregulation of the production of the IEC-derived proallergic cytokine thymic stromal lymphopoietin (TSLP). However, further analysis of intestinal levels of TSLP in IL-12Rß2-/- mice suggested that this event was not directly linked to the IEC-associated IL-12Rß2 chain. We interpreted these data as showing that IEC-associated IL12Rß2 is a component of the cytokine network operating at the interface between the intestinal epithelium and immune system that plays a role in immune regulation.


Subject(s)
Epithelial Cells/immunology , Food Hypersensitivity/immunology , Immunity, Mucosal , Intestinal Mucosa/immunology , Models, Immunological , Receptors, Interleukin-12/immunology , Animals , Coculture Techniques , Epithelial Cells/pathology , Food Hypersensitivity/pathology , Interleukin-12/immunology , Intestinal Mucosa/pathology , Lactococcus lactis/immunology , Mice , Mice, Knockout , Receptors, Interleukin-12/genetics
18.
Trends Immunol ; 38(12): 879-887, 2017 12.
Article in English | MEDLINE | ID: mdl-28844811

ABSTRACT

Intestinal macrophages expressing the fraktalkine receptor (CX3CR1+) represent a cell population that plays a variety of roles ranging from maintaining intestinal immune homeostasis at steady state to controlling antigen access by extending transepithelial dendrites (TEDs) to capture luminal microbes and shuttle them across the epithelium to initiate immune responses. However, recent evidence shows that very early during infection, pathogen-capturing CX3CR1+ macrophages migrate to the lumen of the small intestine, therefore preventing pathogens from traversing the epithelium. Here we discuss the complexity of the at-times seemingly opposing roles played by these cells and propose that CX3CR1-mediated pathogen exclusion is part of a defensive strategy against infections that includes multiple effector mechanisms acting synergistically at the intestinal mucosa.


Subject(s)
Intestinal Mucosa/immunology , Intestines/immunology , Macrophages/immunology , Animals , Antigen Presentation , CX3C Chemokine Receptor 1/metabolism , Cell Movement , Homeostasis , Host-Pathogen Interactions , Humans , Immunomodulation , Phagocytosis
19.
Biochimie ; 138: 62-69, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28438671

ABSTRACT

Secretion of mildly alkaline (pH 8.0-8.5) juice to intestines is one of the key functions of the pancreas. Recent reports indicate that the pancreatic duct system containing the alkaline juice may adjoin the endocrine cells of pancreatic islets. We have previously identified the insulin receptor-related receptor (IRR) that is expressed in islets as a sensor of mildly alkaline extracellular media. In this study, we show that those islet cells that are in contact with the excretory ducts are also IRR-expressing cells. We further analyzed the effects of alkaline media on pancreatic beta cell line MIN6. Activation of endogenous IRR but not of the insulin receptor was detected that could be inhibited with linsitinib. The IRR autophosphorylation correlated with pH-dependent linsitinib-sensitive activation of insulin receptor substrate 1 (IRS-1), the primary adaptor in the insulin signaling pathway. However, in contrast with insulin stimulation, no protein kinase B (Akt/PKB) phosphorylation was detected as a result of alkali treatment. We observed overexpression of several early response genes (EGR2, IER2, FOSB, EGR1 and NPAS4) upon alkali treatment of MIN6 cells but those were IRR-independent. The alkaline medium but not insulin also triggered actin cytoskeleton remodeling that was blocked by pre-incubation with linsitinib. We propose that the activation of IRR by alkali might be part of a local loop of signaling between the exocrine and endocrine parts of the pancreas where alkalinization of the juice facilitate insulin release that increases the volume of secreted juice to control its pH and bicabonate content.


Subject(s)
Actin Cytoskeleton/metabolism , Insulin Receptor Substrate Proteins/metabolism , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Receptor, Insulin , Animals , Cell Line , Hydrogen-Ion Concentration , Insulin Secretion , Insulin-Secreting Cells/physiology , Male , Mice , Phosphorylation , Rats , Rats, Sprague-Dawley , Signal Transduction
20.
Orbit ; 36(2): 110-117, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28388344

ABSTRACT

Orbits are connected with the middle cranial fossa via the optic canal, the superior orbital fissure, the M-type orbitomeningeal foramen, the metoptic canal, an accessory anterior opening of the foramen rotundum, and Warwick's canal. They are also in communication with the anterior cranial fossa via the ethmoidal canals and the A-type orbitomeningeal foramen. The anatomy of these conduits has been recently enriched with several details that are summarized and reviewed in this article.


Subject(s)
Cranial Fossa, Anterior/anatomy & histology , Cranial Fossa, Middle/anatomy & histology , Orbit/anatomy & histology , Anatomic Variation , Ethmoid Bone/anatomy & histology , Humans , Ophthalmic Artery/anatomy & histology , Optic Nerve/anatomy & histology , Sphenoid Bone
SELECTION OF CITATIONS
SEARCH DETAIL
...