Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 28(17): 24353-24362, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32906977

ABSTRACT

Integrated χ(2) devices are a widespread tool for the generation and manipulation of light fields, since they exhibit high efficiency, a small footprint and the ability to interface them with fibre networks. Surprisingly, some commonly used material substrates are not yet fully understood, in particular potassium titanyl phosphate (KTP). A thorough understanding of the fabrication process of waveguides in this material and analysis of their properties is crucial for the realization and the engineering of high efficiency devices for quantum applications. In this paper we present our studies on rubidium-exchanged waveguides fabricated in KTP. Employing energy dispersive X-ray spectroscopy (EDX), we analysed a set of waveguides fabricated with different production parameters in terms of time and temperature. We find that the waveguide depth is dependent on their widths by reconstructing the waveguide depth profiles. Narrower waveguides are deeper, contrary to the theoretical model usually employed. Moreover, we found that the variation of the penetration depth with the waveguide width is stronger at higher temperatures and times. We attribute this behaviour to stress-induced variation in the diffusion process.

2.
Opt Express ; 25(18): 21444-21453, 2017 Sep 04.
Article in English | MEDLINE | ID: mdl-29041441

ABSTRACT

In this work we study the impact of ion implantation on the nonlinear optical properties in MgO:LiNbO3 via confocal second-harmonic microscopy. In detail, we spatially characterize the nonlinear susceptibility in carbon-ion implanted lithium niobate planar waveguides for different implantation energies and fluences, as well as the effect of annealing. In a further step, a computational simulation is used to calculate the implantation range of carbon-ions and the corresponding defect density distribution. A comparison between the simulation and the experimental data indicates that the depth profile of the second-order effective nonlinear coefficient is directly connected to the defect density that is induced by the ion irradiation. Furthermore it can be demonstrated that the annealing treatment partially recovers the second-order optical susceptibility.

3.
Article in English | MEDLINE | ID: mdl-21937306

ABSTRACT

The existence of localized vibrational modes both at the positive and at the negative LiNbO3 (0001) surface is demonstrated by means of first-principles calculations and Raman spectroscopy measurements. First, the phonon modes of the crystal bulk and of the (0001) surface are calculated within the density functional theory. In a second step, the Raman spectra of LiNbO(3) bulk and of the two surfaces are measured. The phonon modes localized at the two surfaces are found to be substantially different, and are also found to differ from the bulk modes. The calculated and measured frequencies are in agreement within the error of the method. Raman spectroscopy is shown to be sensitive to differences between bulk and surface and between positive and negative surface. It represents therefore an alternative method to determine the surface polarity, which does not exploit the pyroelectric or piezoelectric properties of the material.

SELECTION OF CITATIONS
SEARCH DETAIL
...