Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Kidney Int ; 76(7): 767-73, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19571789

ABSTRACT

Primary hyperoxaluria type 1 results from alanine:glyoxylate aminotransferase deficiency. Due to genotype/phenotype heterogeneity in this autosomal recessive disorder, the renal outcome is difficult to predict in these patients and the long-term impact of conservative management in children is unknown. We report here a multicenter retrospective study on the renal outcome in 27 affected children whose biological diagnosis was based on either decreased enzyme activity or identification of mutations in the patient or his siblings. The median age at first symptoms was 2.4 years while that at initiation of conservative treatment was 4.1 years; 6 children were diagnosed upon family screening. The median follow-up was 8.7 years. At diagnosis, 15 patients had an estimated glomerular filtration rate (eGFR) below 90, and 7 children already had stage 2-3 chronic kidney disease. The median baseline eGFR was 74, which rose to 114 with management in the 22 patients who did not require renal replacement therapy. Overall, 20 patients had a stable eGFR, however, 7 exhibited a decline in eGFR of over 20 during the study period. In a Cox regression model, the only variable significantly associated with deterioration of renal function was therapeutic delay with a relative risk of 1.7 per year. Our study strongly suggests that early and aggressive conservative management may preserve renal function of compliant children with this disorder, thereby avoiding dialysis and postponing transplantation.


Subject(s)
Hyperoxaluria, Primary/complications , Hyperoxaluria, Primary/therapy , Kidney Diseases/prevention & control , Age of Onset , Child , Child, Preschool , Disease Management , Glomerular Filtration Rate , Humans , Hyperoxaluria, Primary/diagnosis , Kidney Diseases/etiology , Kidney Diseases/physiopathology , Retrospective Studies
2.
Nat Genet ; 39(7): 875-81, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17558409

ABSTRACT

Cerebello-oculo-renal syndrome (CORS), also called Joubert syndrome type B, and Meckel (MKS) syndrome belong to the group of developmental autosomal recessive disorders that are associated with primary cilium dysfunction. Using SNP mapping, we identified missense and truncating mutations in RPGRIP1L (KIAA1005) in both CORS and MKS, and we show that inactivation of the mouse ortholog Rpgrip1l (Ftm) recapitulates the cerebral, renal and hepatic defects of CORS and MKS. In addition, we show that RPGRIP1L colocalizes at the basal body and centrosomes with the protein products of both NPHP6 and NPHP4, known genes associated with MKS, CORS and nephronophthisis (a related renal disorder and ciliopathy). In addition, the RPGRIP1L missense mutations found in CORS individuals diminishes the interaction between RPGRIP1L and nephrocystin-4. Our findings show that mutations in RPGRIP1L can cause the multiorgan phenotypic abnormalities found in CORS or MKS, which therefore represent a continuum of the same underlying disorder.


Subject(s)
Cerebellar Diseases/genetics , Ciliary Motility Disorders/genetics , Encephalocele/genetics , Eye Diseases/genetics , Kidney Diseases/genetics , Proteins/genetics , Animals , Child , Cytoskeletal Proteins , Disease Models, Animal , Humans , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Knockout , Mice, Mutant Strains , Point Mutation , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL
...