Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Proc Biol Sci ; 291(2021): 20232738, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38628118

ABSTRACT

Midfacial morphology varies between hominoids, in particular between great apes and humans for which the face is small and retracted. The underlying developmental processes for these morphological differences are still largely unknown. Here, we investigate the cellular mechanism of maxillary development (bone modelling, BM), and how potential changes in this process may have shaped facial evolution. We analysed cross-sectional developmental series of gibbons, orangutans, gorillas, chimpanzees and present-day humans (n = 183). Individuals were organized into five age groups according to their dental development. To visualize each species's BM pattern and corresponding morphology during ontogeny, maps based on microscopic data were mapped onto species-specific age group average shapes obtained using geometric morphometrics. The amount of bone resorption was quantified and compared between species. Great apes share a highly similar BM pattern, whereas gibbons have a distinctive resorption pattern. This suggests a change in cellular activity on the hominid branch. Humans possess most of the great ape pattern, but bone resorption is high in the canine area from birth on, suggesting a key role of canine reduction in facial evolution. We also observed that humans have high levels of bone resorption during childhood, a feature not shared with other apes.


Subject(s)
Bone Resorption , Hominidae , Animals , Humans , Hominidae/anatomy & histology , Hylobates , Cross-Sectional Studies , Gorilla gorilla , Pan troglodytes , Morphogenesis , Biological Evolution
2.
J Hum Evol ; 182: 103413, 2023 09.
Article in English | MEDLINE | ID: mdl-37562101

ABSTRACT

Enamel mechanical properties vary across molar crowns, but the relationship among mechanical properties, tooth function, and phylogeny are not well understood. Fifteen primate lower molars representing fourteen taxa (catarrhine, n = 13; platyrrhine, n = 1) were sectioned in the lingual-buccal plane through the mesial cusps. Gradients of enamel mechanical properties, specifically hardness and elastic modulus, were quantified using nanoindentation from inner (near the enamel-dentine junction), through middle, to outer enamel (near the outer enamel surface) at five positions (buccal lateral, buccal cuspal, occlusal middle, lingual cuspal, lingual lateral). Cuspal positions had higher mechanical property values than lateral positions. Middle enamel had higher mean hardness and elastic modulus values than inner and outer locations in all five crown positions. Functionally, the thicker-enameled buccal cusps of lower molars did not show evidence of increased resistance to failure; instead, lingual cusps-which show higher rates of fracture-had higher average mechanical property values, with no significant differences observed between sides. Preliminary phylogenetic results suggest there is relatively little phylogenetic signal in gradients of mechanical properties through the enamel or across the crown. There appears to be common mechanical property patterns across molar crowns in Catarrhini and potentially among primates more broadly. These results may allow more precise interpretations of dental biomechanics and processes resulting in mechanical failure of enamel in primates, such as wear and fracture.


Subject(s)
Tooth , Animals , Phylogeny , Primates , Crowns , Cercopithecidae , Hardness , Dental Enamel
3.
Am J Biol Anthropol ; 182(1): 143-153, 2023 09.
Article in English | MEDLINE | ID: mdl-37493093

ABSTRACT

Dental topographic analysis has proved a valuable tool for quantifying dental morphology. Established workflows often use proprietary software for pre-processing dental surfaces, rendering the method expensive and inaccessible to many. This study explores the use of freeware pre-processing alternatives. We tested 4 decimation tools and 13 smoothing tools across 7 different freeware packages. Surfaces generated via proprietary software could not be replicated, but it was possible to obtain statistically similar measurements using freeware. Based on this investigation, we propose a freeware workflow for researchers to conduct dental topographic analysis, with the expectation that their results will be comparable to that obtained through proprietary methods.


Subject(s)
Software , Workflow
4.
Front Med Technol ; 4: 1004976, 2022.
Article in English | MEDLINE | ID: mdl-36530549

ABSTRACT

Treating open fractures in long bones can be challenging and if not performed properly can lead to poor outcomes such as mal/non-union, deformity, and amputation. One of the most common methods of treating these fracture types is temporary external fixation followed by definitive fixation. The shortage of high-quality affordable external fixators is a long-recognised need, particularly in Low- and Middle-Income Countries (LMICs). This research aimed to develop a low-cost device that can be manufactured locally to international standards. This can provide surge capacity for conflict zones or in response to unpredictable incidents and situations. The fixator presented here and developed by us, the Imperial external fixator, was tested on femur and tibia specimens under 100 cycles of 100 N compression-tension and the results were compared with those of the Stryker Hoffmann 3 frame. The Imperial device was stiffer than the Stryker Hoffmann 3 with a lower median interfragmentary motion (of 0.94 vs. 1.48 mm). The low-cost, easy to use, relatively lightweight, and easy to manufacture (since minimum skillset and basic workshop equipment and materials are needed) device can address a critical shortage and need in LMICs particularly in conflict-affected regions with unpredictable demand and supply. The device is currently being piloted in three countries for road traffic accidents, gunshot wounds and other conflict trauma-including blast cohorts.

5.
Sci Rep ; 12(1): 9203, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35655071

ABSTRACT

Size and shape variation of molar crowns in primates plays an important role in understanding how species adapted to their environment. Gorillas are commonly considered to be folivorous primates because they possess sharp cusped molars which are adapted to process fibrous leafy foods. However, the proportion of fruit in their diet can vary significantly depending on their habitats. While tooth morphology can tell us what a tooth is capable of processing, tooth wear can help us to understand how teeth have been used during mastication. The objective of this study is to explore if differences in diet at the subspecies level can be detected by the analysis of molar macrowear. We analysed a large sample of second lower molars of Grauer's, mountain and western lowland gorilla by combining the Occlusal Fingerprint Analysis method with other dental measurements. We found that Grauer's and western lowland gorillas are characterised by a macrowear pattern indicating a larger intake of fruit in their diet, while mountain gorilla's macrowear is associated with the consumption of more folivorous foods. We also found that the consumption of herbaceous foods is generally associated with an increase in dentine and enamel wear, confirming the results of previous studies.


Subject(s)
Gorilla gorilla , Tooth Wear , Animals , Fruit , Mastication , Molar , Tooth Wear/veterinary
6.
Interface Focus ; 11(5): 20200056, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34938428

ABSTRACT

In recent decades, funding agencies, institutes and professional bodies have recognized the profound benefits of transdisciplinarity in tackling targeted research questions. However, once questions are answered, the previously abundant support often dissolves. As such, the long-term benefits of these transdisciplinary approaches are never fully achieved. Over the last several decades, the integration of anthropology and engineering through inter- and multidisciplinary work has led to advances in fields such as design, human evolution and medical technologies. The lack of formal recognition, however, of this transdisciplinary approach as a unique entity rather than a useful tool or a subfield makes it difficult for researchers to establish laboratories, secure permanent jobs, fund long-term research programmes and train students in this approach. To facilitate the growth and development and witness the long-term benefits of this approach, we propose the integration of anthropology and engineering be recognized as a new, independent field known as anthroengineering. We present a working definition for anthroengineering and examples of how anthroengineering has been used. We discuss the necessity of recognizing anthroengineering as a unique field and explore potential novel applications. Finally, we discuss the future of anthroengineering, highlighting avenues for moving the field forward.

7.
Interface Focus ; 11(5): 20200092, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34938436

ABSTRACT

The distal femoral metaphyseal surface presents dramatically different morphologies in juvenile extant hominoids-humans have relatively flat metaphyseal surfaces when compared with the more complex metaphyseal surfaces of apes. It has long been speculated that these different morphologies reflect different biomechanical demands placed on the growth plate during locomotor behaviour, with the more complex metaphyseal surfaces of apes acting to protect the growth plate during flexed-knee behaviours like squatting and climbing. To test this hypothesis, we built subject-specific parametric finite-element models from the surface scans of the femora of five Pan and six Homo juveniles. We then simulated the loading conditions of either a straight-leg or flexed-knee gait and measured the resulting stresses at the growth plate. When subjected to the simulated flexed-knee loading conditions, both the maximum and mean von Mises stresses were significantly lower in the Pan models than in the Homo models. Further, during these loading conditions, von Mises stresses were strongly negatively correlated with ariaDNE, a measure of complexity of the metaphyseal surface. These results indicate that metaphyseal surface morphology has a robust effect on growth plate mechanics.

8.
Interface Focus ; 11(5): 20200085, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34938434

ABSTRACT

Diet is a driving force in human evolution. Two species of Plio-Pleistocene hominins, Paranthropus robustus and Australopithecus africanus, have derived craniomandibular and dental morphologies which are often interpreted as P. robustus having a more biomechanically challenging diet. While dietary reconstructions based on dental microwear generally support this, they show extensive dietary overlap between species, and craniomandibular and dental biomechanical analyses can yield contradictory results. Using methods from anthropology and engineering (i.e. anthroengineering), we quantified the molar biomechanical performance of these hominins to investigate possible dietary differences between them. Thirty-one lower second molars were 3D printed and used to fracture gelatine blocks, and Bayesian generalized linear models were used to investigate the relationship between species and tooth wear, size and shape, and biomechanical performance. Our results demonstrate that P. robustus required more force and energy to fracture blocks but had a higher force transmission rate. Considering previous dietary reconstructions, we propose three evolutionary scenarios concerning the dietary ecologies of these hominins. These evolutionary scenarios cannot be reached by investigating morphological differences in isolation, but require combining several lines of evidence. This highlights the need for a holistic approach to reconstructing hominin dietary ecology.

9.
Clin Anat ; 34(5): 810-820, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33905585

ABSTRACT

The cyamella is a rare, generally asymptomatic, knee sesamoid bone located in the proximal tendon of the popliteal muscle. Only two studies have investigated cyamella presence/absence in humans, putting ossified prevalence rates at 0.57%-1.8%. We aim to (a) determine cyamella prevalence in a Korean population, (b) examine coincident development of the cyamella and fabella, and (c) perform a systematic review and meta-analysis on the cyamella in humans. Medical computed tomography scans of 106 individuals were reviewed. A systematic review and meta-analysis were performed following PRISMA guidelines. Cyamellae were found in 3/212 knees (1.4%), and presence/absence was uncorrelated to height, age, and sex. The cyamella was not found coincidentally with the fabella, although the statistical power was low. Our systematic review/meta-analysis revealed cyamellae were generally asymptomatic and ossification could occur at 14 years. Cyamellae were equally likely to be found in both sexes, knees, one or both knees, and there appeared to be no global variation in prevalence rates. Cyamellae were found in three distinct locations. There is little support for the role of intrinsic genetic and/or environmental factors in cyamella development in humans. However, the apparent phylogenetic signal in Primates suggests genetics plays a role in cyamella development. We propose a cyamella classification system based on cyamella location (Class I, popliteal sulcus; Class II, tibial condyle; Class III, fibular head) and hypothesize locations may correspond to distinct developmental pathways, and cyamella function may vary with location.


Subject(s)
Calcinosis/epidemiology , Knee Joint , Sesamoid Bones/abnormalities , Tendons/abnormalities , Humans , Prevalence , Republic of Korea/epidemiology
10.
PeerJ ; 8: e10028, 2020.
Article in English | MEDLINE | ID: mdl-33088615

ABSTRACT

INTRODUCTION: The fabella is a sesamoid bone embedded in the tendon of the lateral head of the gastrocnemius. It is the only bone in the human body to increase in prevalence in the last 100 years. As the fabella can serve as an origin/insertion for muscles, tendons, and/or ligaments (e.g., the oblique popliteal and fabellofibular ligaments), temporal changes in fabella prevalence could lead to temporal changes in "standard" knee anatomy. The aim of this study was to investigate unique myological changes to the posterolateral corner knee associated with ossified fabella presence and perform a systematic review to contextualize our results. METHODS: Thirty-three fresh frozen cadaveric knees were considered. As the knees were all used for previous experimentation, the knees were in variable levels of preservation. Those with adequate preservation were used to determine ossified fabella presence/absence. When ossified fabellae were present, unique myologies associated with the fabella were recorded. A systematic review was performed on the double-headed popliteus to investigate possible correlations between this anatomical variant and the fabella. RESULTS: Of the 33 knees, 30 preserved enough soft tissue to determine fabella presence/absence: 16/30 knees had fabellae (five cartilaginous and 11 ossified). Eight of the eleven knees with ossified fabellae retained enough soft tissue to investigate the posterolateral knee anatomy. Of these, 4/8 exhibited unique myological changes. One knee had a double-headed popliteus muscle where one head originated from the medial side of a large, bulbous fabella. A systematic review revealed double-headed popliteus muscles are rare, but individuals are 3.7 times more likely to have a fabella if they have a double-headed popliteus. Another knee had a large, thick ligament stretching from the lateral edge of the fabella to the inferoposterior edge of the lateral femoral epicondyle, deep to the lateral collateral ligament (LCL) and near the popliteal sulcus. We found no mention of such a ligament in the literature and refer to it here as the "femorofabellar ligament". In all four knees, the plantaris and lateral gastrocnemius appeared to share a common tendinous origin, and the fabella was located at/near the junction of these muscles. In the case of the double-headed popliteus, the fabella clearly served as an origin for the plantaris. CONCLUSIONS: Despite being found in an average of 36.80% of human knees, most standard anatomical models fail to account for the fabella and/or the unique myological changes associated with fabella presence. Although our sample is small, these data highlight aspects of human biological variability generally not considered when creating generalized anatomical models. Further work is needed to identify additional changes associated with ossified fabellae and the functional consequences of omitting these changes from models.

11.
Evol Anthropol ; 29(5): 245-262, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32687672

ABSTRACT

Diet plays an incontrovertible role in primate evolution, affecting anatomy, growth and development, behavior, and social structure. It should come as no surprise that a myriad of methods for reconstructing diet have developed, mostly utilizing the element that is not only most common in the fossil record but also most pertinent to diet: teeth. Twenty years ago, the union of traditional, anatomical analyses with emerging scanning and imaging technologies led to the development of a new method for quantifying tooth shape and reconstructing the diets of extinct primates. This method became known as dental topography.


Subject(s)
Molar/anatomy & histology , Primates/anatomy & histology , Animals , Anthropology, Physical , Diet , Feeding Behavior/physiology , Female , Humans , Male , Odontometry
12.
J Anat ; 236(2): 228-242, 2020 02.
Article in English | MEDLINE | ID: mdl-31623020

ABSTRACT

The fabella is a sesamoid bone located in the gastrocnemius behind the lateral femoral condyle. In humans, fabellae are 3.5 times more common today than they were 100 years ago, with prevalence rates varying between and within populations. In particular, fabellae have been assumed to be more common in Asians than non-Asians, equally common in men and women, potentially more common in older individuals, and bilateral cases (one per knee) appear to be more common than unilateral ones. The roles of genetic and environmental factors in this phenotypic variation have been hypothesized, but not rigorously investigated. Given its clinical and evolutionary significance (i.e. being associated with several knee ailments, causing medical issues on its own, interfering with medical devices, and being less common in humans than in other mammals), it is important comprehensively to understand prevalence rate variation, and the roles of genetics and environmental factors in that variation. To address these questions, we performed a meta-analysis on data from studies published from 1875 to 2018 to investigate possible variation in sexual dimorphic (n = 22 studies, 7911 knees), ontogenetic (n = 10 studies, 4391 knees), and global (n = 65 studies, 21 626 knees) fabella prevalence rates. In addition, we investigated what proportion of cases are bilateral (n = 37 studies, 900 individuals), and among unilateral cases (n = 20 studies, 204 individuals), if fabellae are more common in the left or right knee. Our results show that, today, fabellae are 2.47-2.60% more common in men than women, and prevalence rates increase ontogenetically in old age (i.e. 70 years old), implying that fabellae can ossify early (i.e. 12 years old) or late in life. Approximately 72.94% of cases are bilateral, and among unilateral ones, fabellae are equally common in right and left knees. There is marked regional variation in fabella prevalence rates, with rates being highest in Asia, followed by Oceania, South America, Europe, Middle East, and North America, and lowest in Africa. Worldwide, an average of 36.80% of knees has ossified fabellae detectable by dissection. These results imply that, while the ability to form a fabella may be genetically controlled, the mechanisms that trigger fabella ossification may be environmentally controlled. What these environmental factors are, can only be speculated.


Subject(s)
Knee Joint/anatomy & histology , Muscle, Skeletal/anatomy & histology , Sesamoid Bones/anatomy & histology , Biological Evolution , Female , Humans , Male
14.
PLoS One ; 14(5): e0216229, 2019.
Article in English | MEDLINE | ID: mdl-31059538

ABSTRACT

Dental topography is a widely used method for quantifying dental morphology and inferring dietary ecology in animals. Differences in methodology have brought into question the comparability of different studies. Using primate mandibular second molars, we investigated the effects of mesh preparation parameters smoothing, cropping, and triangle count/mesh resolution (herein, resolution) on six topographic variables (Dirichlet normal energy, DNE; orientation patch count rotated, OPCR; relief index, RFI; ambient occlusion, portion de ciel visible, PCV; enamel surface area, SA; tooth size) to determine the effects of smoothing, cropping, and triangle count/resolution on topographic values and the relationship between these values and diet. All topographic metrics are sensitive to smoothing, cropping method, and triangle count/resolution. In general, smoothing decreased DNE, OPCR, RFI, and SA, increased PCV, and had no predictable effect on tooth size. Relative to the basin cut off (BCO) cropping method, the entire enamel cap (EEC) method increased RFI, SA, and size, and had no predictable effect on DNE and OPCR. Smoothing and cropping affected DNE/OPCR and surfaces with low triangle counts more than other metrics and surfaces with high triangle counts. There was a positive correlation between DNE/OPCR and triangle count/resolution, and the rate of increase was weakly correlated to diet. PCV tended to converge or decrease with increases in triangle count/resolution, and RFI, SA, and size converged. Finally, there appears to be no optimal triangle count or resolution for predicting diet from this sample, and constant triangle count appeared to perform better than constant resolution for predicting diet.


Subject(s)
Diet , Tooth/anatomy & histology , Animals , Ecology , Molar/anatomy & histology , Odontometry/methods , Primates/anatomy & histology , Primates/physiology , Tooth Wear/etiology
15.
PLoS One ; 14(5): e0215436, 2019.
Article in English | MEDLINE | ID: mdl-31042728

ABSTRACT

Recently, ambient occlusion, quantified through portion de ciel visible (PCV) was introduced as a method for quantifying dental morphological wear resistance and reconstructing diet in mammals. Despite being used to reconstruct diet and investigate the relationship between dental form and function, no rigorous analysis has investigated the correlation between PCV and diet. Using a sample of platyrrhine and prosimians M2s, we show average PCV was significantly different between most dietary groups. In prosimian, insectivores had the lowest PCV, followed by folivores, omnivores, frugivores, and finally hard-object feeders. In platyrrhines, omnivores had the lowest average PCV, followed by folivores, frugivores, and finally hard-object feeders. PCV was correlated to two topographic variables (Dirichlet normal energy, DNE, and relief index, RFI) but uncorrelated to three others (orientation patch count rotated, OPCR, tooth surface area, and tooth size). The OPCR values here differed greatly from previously published values using the same sample, showing how differences in data acquisition (i.e., using 2.5D vs. 3D surfaces) can lead to drastic differences in results. Compared to other popular topographic variables, PCV performed as well or better at predicting diet in these groups, and when combined with a metric for size, the percent of successful dietary classifications reached 90%. Further, using an ontogenetic series of hominin (Paranthropus robustus) M2s, we show that PCV correlates well with probability of wear, with PCV values being higher on the portions of the occlusal surface that experience more wear (e.g., cusps and crest tips, wear facets) than the portions of the tooth that experience less. This relationship is strongest once wear facets have begun to form on the occlusal surface. These results highlight the usefulness of PCV in quantifying morphological wear resistance and predicting diet in mammals.


Subject(s)
Disease Resistance , Platyrrhini/physiology , Strepsirhini/physiology , Tooth/anatomy & histology , Animals , Behavior, Animal , Dental Occlusion , Diet , Feeding Behavior , Platyrrhini/anatomy & histology , Strepsirhini/anatomy & histology , Tooth/physiology , Tooth Wear
16.
J Anat ; 235(1): 67-79, 2019 07.
Article in English | MEDLINE | ID: mdl-30994938

ABSTRACT

The fabella is a sesamoid bone located behind the lateral femoral condyle. It is common in non-human mammals, but the prevalence rates in humans vary from 3 to 87%. Here, we calculate the prevalence of the fabella in a Korean population and investigate possible temporal shifts in prevalence rate. A total of 52.83% of our individuals and 44.34% of our knees had fabellae detectable by computed tomography scanning. Men and women were equally likely to have a fabella, and bilateral cases (67.86%) were more common than unilateral ones (32.14%). Fabella presence was not correlated with height or age, although our sample did not include skeletally immature individuals. Our systematic review yielded 58 studies on fabella prevalence rate from 1875-2018 which met our inclusion criteria, one of which was an outlier. Intriguingly, a Bayesian mixed effects generalized linear model revealed a temporal shift in prevalence rates, with the median prevalence rate in 2000 (31.00%) being ~ 3.5 times higher than that in 1900 (7.64%). In all four countries with studies before and after 1960, higher rates were always found after 1960. Using data from two other systematic reviews, we found no increase in prevalence rates of 10 other sesamoid bones in the human body, indicating that the increase in fabella prevalence rate is unique. Fabella presence/absence is due to a combination of genetic and environmental factors: as the prevalence rates of other sesamoid bones have not changed in the last 100 years, we postulate the increase in fabella prevalence rate is due to an environmental factor. Namely, the global increase in human height and weight (due to improved nutrition) may have increased human tibial length and muscle mass. Increases in tibial length could lead to a larger moment arm acting on the knee and on the tendons crossing it. Coupled with the increased force from a larger gastrocnemius, this could produce the mechanical stimuli necessary to initiate fabella formation and/or ossification.


Subject(s)
Prevalence , Sesamoid Bones , Adult , Female , Humans , Knee Joint/anatomy & histology , Korea , Male , Middle Aged
17.
J Hum Evol ; 118: 14-26, 2018 05.
Article in English | MEDLINE | ID: mdl-29606200

ABSTRACT

Though late Middle Pleistocene in age, Homo naledi is characterized by a mosaic of Australopithecus-like (e.g., curved fingers, small brains) and Homo-like (e.g., elongated lower limbs) traits, which may suggest it occupied a unique ecological niche. Ecological reconstructions inform on niche occupation, and are particularly successful when using dental material. Tooth shape (via dental topography) and size were quantified for four groups of South African Plio-Pleistocene hominins (specimens of Australopithecus africanus, Paranthropus robustus, H. naledi, and Homo sp.) on relatively unworn M2s to investigate possible ecological differentiation in H. naledi relative to taxa with similar known geographical ranges. H. naledi has smaller, but higher-crowned and more wear resistant teeth than Australopithecus and Paranthropus. These results are found in both lightly and moderately worn teeth. There are no differences in tooth sharpness or complexity. Combined with the high level of dental chipping in H. naledi, this suggests that, relative to Australopithecus and Paranthropus, H. naledi consumed foods with similar fracture mechanics properties but more abrasive particles (e.g., dust, grit), which could be due to a dietary and/or environmental shift(s). The same factors that differentiate H. naledi from Australopithecus and Paranthropus may also differentiate it from Homo sp., which geologically predates it, in the same way. Compared to the great apes, all hominins have sharper teeth, indicating they consumed foods requiring higher shear forces during mastication. Despite some anatomical similarities, H. naledi likely occupied a distinct ecological niche from the South African hominins that predate it.


Subject(s)
Diet , Fossils/anatomy & histology , Hominidae/anatomy & histology , Hominidae/physiology , Molar/anatomy & histology , Animals , Biological Evolution
18.
J Hum Evol ; 112: 15-29, 2017 11.
Article in English | MEDLINE | ID: mdl-29037413

ABSTRACT

Dental topography reflects diet accurately in several extant and extinct mammalian clades. However, dental topographic dietary reconstructions have high success rates only when closely related taxa are compared. Given the dietary breadth that exists among extant apes and likely existed among fossil hominins, dental topographic values from many species and subspecies of great apes are necessary for making dietary inferences about the hominin fossil record. Here, we present the results of one metric of dental topography, Dirichlet normal energy (DNE), for seven groups of great apes (Pongo pygmaeus pygmaeus, Pan paniscus, Pan troglodytes troglodytes and schweinfurthii, Gorilla gorilla gorilla, Gorilla beringei graueri and beringei). Dirichlet normal energy was inadequate at differentiating folivores from frugivores, but was adequate at predicting which groups had more fibrous diets among sympatric African apes. Character displacement analyses confirmed there is substantial dental topographic and relative molar size (M1:M2 ratio; length, width, and area) divergence in sympatric apes when compared to their allopatric counterparts, but character displacement is only present in relative molar size when DNE is also considered. Presence of character displacement is likely due to indirect competition over similar food resources. Assuming similar ecological conditions in the Plio-Pleistocene, the derived masticatory apparatuses of the robust australopiths and early Homo may be due to indirect competition over dietary resources between the taxa, causing dietary niche partitioning. Our results imply that dental topography cannot be used to predict dietary categories in fossil hominins without consideration of ecological factors, such as dietary and geographic overlap. In addition, our results may open new avenues for understanding the community compositions of early hominins and the formation of specific ecological niches among hominin taxa.


Subject(s)
Diet , Hominidae/anatomy & histology , Tooth/anatomy & histology , Animals , Biological Evolution , Female , Humans , Male
19.
Evolution ; 71(5): 1327-1338, 2017 May.
Article in English | MEDLINE | ID: mdl-28230246

ABSTRACT

Ostrich-like birds (Palaeognathae) show very little taxonomic diversity while their sister taxon (Neognathae) contains roughly 10,000 species. The main anatomical differences between the two taxa are in the crania. Palaeognaths lack an element in the bill called the lateral bar that is present in both ancestral theropods and modern neognaths, and have thin zones in the bones of the bill, and robust bony elements on the ventral surface of their crania. Here we use a combination of modeling and developmental experiments to investigate the processes that might have led to these differences. Engineering-based finite element analyses indicate that removing the lateral bars from a neognath increases mechanical stress in the upper bill and the ventral elements of the skull, regions that are either more robust or more flexible in palaeognaths. Surgically removing the lateral bar from neognath hatchlings led to similar changes. These results indicate that the lateral bar is load-bearing and suggest that this function was transferred to other bony elements when it was lost in palaeognaths. It is possible that the loss of the load-bearing lateral bar might have constrained diversification of skull morphology in palaeognaths and thus limited taxonomic diversity within the group.


Subject(s)
Biological Evolution , Birds/anatomy & histology , Skull/anatomy & histology , Animals , Beak , Female , Struthioniformes
20.
Nat Commun ; 7: 10596, 2016 Feb 08.
Article in English | MEDLINE | ID: mdl-26853550

ABSTRACT

Australopithecus sediba has been hypothesized to be a close relative of the genus Homo. Here we show that MH1, the type specimen of A. sediba, was not optimized to produce high molar bite force and appears to have been limited in its ability to consume foods that were mechanically challenging to eat. Dental microwear data have previously been interpreted as indicating that A. sediba consumed hard foods, so our findings illustrate that mechanical data are essential if one aims to reconstruct a relatively complete picture of feeding adaptations in extinct hominins. An implication of our study is that the key to understanding the origin of Homo lies in understanding how environmental changes disrupted gracile australopith niches. Resulting selection pressures led to changes in diet and dietary adaption that set the stage for the emergence of our genus.


Subject(s)
Bite Force , Computer Simulation , Diet , Hominidae , Jaw/physiology , Tooth Wear , Animals , Food , Fossils , Molar , Pan troglodytes
SELECTION OF CITATIONS
SEARCH DETAIL
...