Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 138
Filter
Add more filters










Publication year range
1.
Biomaterials ; 306: 122496, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38373363

ABSTRACT

Slow-healing and chronic wounds represent a major global economic and medical burden, and there is significant unmet need for novel therapies which act to both accelerate wound closure and enhance biomechanical recovery of the skin. Here, we report a new approach in which bioactives that augment early stages of wound healing can kickstart and engender effective wound closure in healthy and diabetic, obese animals, and set the stage for subsequent tissue repair processes. We demonstrate that a nanomaterial dressing made of silk fibroin and gold nanorods (GNR) stimulates a pro-neutrophilic, innate immune, and controlled inflammatory wound transcriptomic response. Further, Silk-GNR, lasered into the wound bed, in combination with exogeneous histamine, accelerates early-stage processes in tissue repair leading to effective wound closure. Silk-GNR and histamine enhanced biomechanical recovery of skin, increased transient neoangiogenesis, myofibroblast activation, epithelial-to-mesenchymal transition (EMT) of keratinocytes and a pro-resolving neutrophilic immune response, which are hitherto unknown activities for these bioactives. Predictive and temporally coordinated delivery of growth factor nanoparticles that modulate later stages of tissue repair further accelerated wound closure in healthy and diabetic, obese animals. Our approach of kickstarting healing by delivering the "right bioactive at the right time" stimulates a multifactorial, pro-reparative response by augmenting endogenous healing and immunoregulatory mechanisms and highlights new targets to promote tissue repair.


Subject(s)
Diabetes Mellitus , Nanostructures , Animals , Wound Healing , Histamine , Silk , Obesity
2.
Biochem Biophys Res Commun ; 696: 149502, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38232666

ABSTRACT

Chronic skin wounds decrease the quality of life of millions of diabetic patients worldwide. Chitosan has previously been shown to possess hemostatic properties, decrease inflammation, promote fibroblast proliferation, and hair growth. We developed a relatively low-cost polyelectrolyte complex (PEC) film dressing made of chitosan and polygalacturonic acid and tested it for its ability to accelerate diabetic wound healing. Genetically diabetic male mice were shaved on the dorsum, and one day later a 1 cm diameter full-thickness excisional wound was created. The PEC film was applied immediately after wounding and left in place for 14 days. Controls consisted of wounds treated with a fibrin gel. Wounds covered with the PEC film had closed completely by post-wounding day 42, while untreated wounds were only half-way closed. Histological analysis of wounds confirmed that PEC-treated wounds had fully re-epithelialized, while control wounds lacked a continuous epidermis at the wound center. We also observed that the area of skin under the PEC film experienced much more rapid hair growth. Histologically, there were significantly more hair follicles around the scar area (p < 0.05) in the PEC-treated group as compared to the control group. Thus, chitosan-polygalacturonic acid PEC films can accelerate both wound healing and hair growth in diabetic mice, and should be further investigated as a potential future treatment for diabetic chronic wounds.


Subject(s)
Chitosan , Diabetes Mellitus, Experimental , Pectins , Humans , Mice , Male , Animals , Diabetes Mellitus, Experimental/complications , Quality of Life , Wound Healing , Bandages , Hair
3.
Bioengineering (Basel) ; 11(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38247940

ABSTRACT

Diabetic retinopathy affects more than 100 million people worldwide and is projected to increase by 50% within 20 years. Increased blood glucose leads to the formation of advanced glycation end products (AGEs), which cause cellular and molecular dysfunction across neurovascular systems. These molecules initiate the slow breakdown of the retinal vasculature and the inner blood retinal barrier (iBRB), resulting in ischemia and abnormal angiogenesis. This project examined the impact of AGEs in altering the morphology of healthy cells that comprise the iBRB, as well as the effects of AGEs on thrombi formation, in vitro. Our results illustrate that AGEs significantly alter cellular areas and increase the formation of blood clots via elevated levels of tissue factor. Likewise, AGEs upregulate the expression of cell receptors (RAGE) on both endothelial and glial cells, a hallmark biomarker of inflammation in diabetic cells. Examining the effects of AGEs stimulation on cellular functions that work to diminish iBRB integrity will greatly help to advance therapies that target vision loss in adults.

4.
Sensors (Basel) ; 23(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37836943

ABSTRACT

Paper-based biosensors are a potential paradigm of sensitivity achieved via microporous spreading/microfluidics, simplicity, and affordability. In this paper, we develop decorated paper with graphene and conductive polymer (herein referred to as graphene conductive polymer paper-based sensor or GCPPS) for sensitive detection of biomolecules. Planetary mixing resulted in uniformly dispersed graphene and conductive polymer ink, which was applied to laser-cut Whatman filter paper substrates. Scanning electron microscopy and Raman spectroscopy showed strong attachment of conductive polymer-functionalized graphene to cellulose fibers. The GCPPS detected dopamine and cytokines, such as tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6) in the ranges of 12.5-400 µM, 0.005-50 ng/mL, and 2 pg/mL-2 µg/mL, respectively, using a minute sample volume of 2 µL. The electrodes showed lower detection limits (LODs) of 3.4 µM, 5.97 pg/mL, and 9.55 pg/mL for dopamine, TNF-α, and IL-6 respectively, which are promising for rapid and easy analysis for biomarkers detection. Additionally, these paper-based biosensors were highly selective (no serpin A1 detection with IL-6 antibody) and were able to detect IL-6 antigen in human serum with high sensitivity and hence, the portable, adaptable, point-of-care, quick, minute sample requirement offered by our fabricated biosensor is advantageous to healthcare applications.


Subject(s)
Biosensing Techniques , Graphite , Humans , Polymers/chemistry , Interleukin-6 , Tumor Necrosis Factor-alpha , Graphite/chemistry , Dopamine , Biosensing Techniques/methods , Electrochemical Techniques/methods , Limit of Detection
5.
Annu Rev Biomed Eng ; 25: 1-21, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37289555

ABSTRACT

Hemolysis (i.e., red blood cell lysis) can increase circulatory levels of cell-free hemoglobin (Hb) and its degradation by-products, namely heme (h) and iron (Fe). Under homeostasis, minor increases in these three hemolytic by-products (Hb/h/Fe) are rapidly scavenged and cleared by natural plasma proteins. Under certain pathophysiological conditions, scavenging systems become overwhelmed, leading to the accumulation of Hb/h/Fe in the circulation. Unfortunately, these species cause various side effects such as vasoconstriction, hypertension, and oxidative organ damage. Therefore, various therapeutics strategies are in development, ranging from supplementation with depleted plasma scavenger proteins to engineered biomimetic protein constructs capable of scavenging multiple hemolytic species. In this review, we briefly describe hemolysis and the characteristics of the major plasma-derived protein scavengers of Hb/h/Fe. Finally, we present novel engineering approaches designed to address the toxicity of these hemolytic by-products.


Subject(s)
Heme , Hemolysis , Humans , Heme/metabolism , Hemolysis/physiology , Iron , Haptoglobins/metabolism , Haptoglobins/therapeutic use , Hemoglobins/metabolism
6.
Heliyon ; 9(5): e15878, 2023 May.
Article in English | MEDLINE | ID: mdl-37215914

ABSTRACT

Hemoglobin (Hb) based oxygen carriers (HBOCs) are designed to minimize the toxicity of extracellular Hb, while preserving its high oxygen-carrying capacity for oxygen delivery to cells. Polymerized human Hb (PolyHb) is a novel type of nanosized HBOC synthesized via glutaraldehyde-mediated crosslinking of free Hb, and which preserves the predominant quaternary state during the crosslinking reaction (low oxygen affinity tense (T) quaternary state PolyHb is synthesized at 0% Hb oxygen saturation, and high oxygen affinity relaxed (R) quaternary state PolyHb is synthesized at 100% Hb oxygen saturation). Major potential applications for PolyHbs, and HBOCs in general, include oxygenation of bioreactor systems containing large liver cell masses, and ex-vivo perfusion preservation of explanted liver grafts. The toxicity of these compounds toward liver cells must be evaluated before testing their use in these complex systems for oxygen delivery. Herein, we characterized the effect of PolyHbs on the hepatoma cell line HepG2/C3A, used as a model hepatocyte and as a cell line used in some investigational bioartificial liver support devices. HepG2/C3A cells were incubated in cell culture media containing PolyHbs or unmodified Hb at concentrations up to 50 mg/mL and for up to 6 days. PolyHbs were well tolerated at a dose of 10 mg/mL, with no significant decrease in cell viability; however, proliferation was inhibited as much as 10-fold after 6 days of exposure at 50 mg/mL. Secretion of albumin, and urea, as well as glucose and ammonia removal were measured in presence of 10 mg/mL of PolyHbs or unmodified Hb. In addition, methoxy- and ethoxy-resorufin deacetylase (MROD and EROD) activities, which reflect cytochrome P450 metabolism, were measured. R-state PolyHb displayed improved or intact activity in 3 out of 7 functions compared to unmodified Hb. T-state PolyHb displayed improved or intact activity in 4 out of 7 functions compared to unmodified Hb. Thus, PolyHbs, both in the R-state and T-state, are safer to use at a concentration of 10 mg/mL as compared to unmodified Hb in static culture liver-related applications.

7.
Adv Wound Care (New Rochelle) ; 12(5): 241-255, 2023 05.
Article in English | MEDLINE | ID: mdl-34779253

ABSTRACT

Objective: Chronic skin wounds are one of the most devastating complications in diabetic patients due to the formation of advanced glycation end-products (AGEs) resulting from nonenzymatic glycation of proteins and lipids in hyperglycemia. AGEs, upon binding their receptors (RAGEs), trigger proinflammatory signals that impair wound healing in diabetes and contribute to the pathology of chronic skin wounds. Approach: We previously developed a recombinant fusion protein containing the binding domain of RAGE (vRAGE) linked to elastin-like polypeptides (ELPs) that acts as a competitive inhibitor of AGEs, and another ELP fusion protein containing stromal cell-derived factor 1 (SDF1) that promotes revascularization. In this study, we report the effects of protein coacervates incorporating both vRAGE-ELP and SDF1-ELP on wound healing in an in vitro diabetes-mimicking cell culture system, and in in vivo in full-thickness wounds on diabetic mice. Results: The combination of vRAGE-ELP and SDF1-ELP increased cell metabolic activity in AGE-stimulated endothelial cells, promoted in vitro tube formation and accelerated healing in an in vitro cell migration assay. When used in a single topical application on full-thickness excisional skin wounds in diabetic mice, wound closure in the combination groups reached almost 100% on postwounding day 35, compared to 62% and 85% on the same days in animals treated with fibrin gel control and vehicle control consisting of ELP alone. Innovation: To our knowledge, this is the first study that attempts to reverse the AGE-RAGE-mediated signaling as well as to promote cell proliferation and vascularization in one single treatment. Conclusion: The codelivery of vRAGE-ELP and SDF1-ELP has potential for the treatment of diabetic wounds.


Subject(s)
Diabetes Mellitus, Experimental , Elastin , Mice , Animals , Elastin/chemistry , Endothelial Cells/metabolism , Peptides , Recombinant Proteins , Glycation End Products, Advanced
8.
Biomolecules ; 12(12)2022 12 02.
Article in English | MEDLINE | ID: mdl-36551231

ABSTRACT

Mesenchymal stem/stromal cells (MSC) promote recovery in a wide range of animal models of injury and disease. They can act in vivo by differentiating and integrating into tissues, secreting factors that promote cell growth and control inflammation, and interacting directly with host effector cells. We focus here on MSC secreted factors by encapsulating the cells in alginate microspheres, which restrict cells from migrating out while allowing diffusion of factors including cytokines across the capsules. One week after intrathecal lumbar injection of human bone marrow MSC encapsulated in alginate (eMSC), rat IL-10 expression was upregulated in distant rat spinal cord injury sites. Detection of human IL-10 protein in rostrally derived cerebrospinal fluid (CSF) indicated distribution of this human MSC-secreted cytokine throughout rat spinal cord CSF. Intraperitoneal (IP) injection of eMSC in a rat model for endotoxemia reduced serum levels of inflammatory cytokines within 5 h. Detection of human IL-6 in sera after injection of human eMSC indicates rapid systemic distribution of this human MSC-secreted cytokine. Despite proof of concept for eMSC in various disorders using animal models, translation of encapsulation technology has not been feasible primarily because methods for scale-up are not available. To scale-up production of eMSC, we developed a rapid, semi-continuous, capsule collection system coupled to an electrosprayer. This system can produce doses of encapsulated cells sufficient for use in clinical translation.


Subject(s)
Anti-Inflammatory Agents , Cell Encapsulation , Cytokines , Mesenchymal Stem Cells , Animals , Humans , Rats , Alginates , Cell Encapsulation/methods , Cytokines/metabolism , Interleukin-10/metabolism
9.
Annu Rev Biomed Eng ; 24: 61-83, 2022 06 06.
Article in English | MEDLINE | ID: mdl-35226819

ABSTRACT

Chronic skin wounds are commonly found in older individuals who have impaired circulation due to diabetes or are immobilized due to physical disability. Chronic wounds pose a severe burden to the health-care system and are likely to become increasingly prevalent in aging populations. Various treatment approaches exist to help the healing process, although the healed tissue does not generally recapitulate intact skin but rather forms a scar that has inferior mechanical properties and that lacks appendages such as hair or sweat glands. This article describes new experimental avenues for attempting to improve the regenerative response of skin using biophysical techniques as well as biochemical methods, in some cases by trying to harness the potential of stem cells, either endogenous to the host or provided exogenously, to regenerate the skin. These approaches primarily address the local wound environment and should likely be combined with other modalities to address regional and systemic disease, as well as social determinants of health.


Subject(s)
Skin , Wound Healing , Aged , Humans , Regeneration/physiology , Stem Cells , Wound Healing/physiology
10.
Surg Technol Int ; 39: 67-73, 2021 07 09.
Article in English | MEDLINE | ID: mdl-34260057

ABSTRACT

Debridement is a standard part of wound care that is used on both acute and chronic wounds. Current methods of wound debridement include: autolytic based on the natural immune response, surgical, enzymatic based on application of exogenous proteases, mechanical using water jets and ultrasound, and biological using live organisms such as maggots. The choice of individual methods involves a trade-off between speed of treatment, selectivity, and pain. Irreversible electroporation via the application of pulsed electric fields has been used as a novel approach for deep tissue ablation, sometimes in conjunction with chemotherapy, as in the case of tumors, and also in cases where high precision is needed in otherwise very fragile tissues, such as for treating diabetic neuropathy and in epicardial atrial ablation. This method could be readily extended to wound care as it is both rapid and relatively painless, and it is also effective at decreasing bacterial load and clearing biofilms. Furthermore, the process primarily targets cells leaving the extracellular matrix relatively intact, thus providing a suitable natural scaffold for host cellular invasion and regrowth. A unique aspect of the use of pulsed electric fields is that around the region where ablation is perfomed, electric fields of lower energy are dissipated into the healthy tissue. There is a range of electric fields that are known to stimulate cellular functions, in particular migration and proliferation, and that may contribute to the healing process after electroporation. While irreversible electroporation is a potentially useful alternative to other debridement methods, future clinical application awaits technological advances in electrode design that will enable precise delivery of the therapy in wounds of various sizes and depths.


Subject(s)
Electroporation , Wound Healing , Debridement , Forecasting
11.
Antioxidants (Basel) ; 10(7)2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34202655

ABSTRACT

Traumatic injuries to the nervous system, including the brain and spinal cord, lead to neurological dysfunction depending upon the severity of the injury. Due to the loss of motor (immobility) and sensory function (lack of sensation), spinal cord injury (SCI) and brain injury (TBI) patients may be bed-ridden and immobile for a very long-time. These conditions lead to secondary complications such as bladder/bowel dysfunction, the formation of pressure ulcers (PUs), bacterial infections, etc. PUs are chronic wounds that fail to heal or heal very slowly, may require multiple treatment modalities, and pose a risk to develop further complications, such as sepsis and amputation. This review discusses the role of oxidative stress and reactive oxygen species (ROS) in the formation of PUs in patients with TBI and SCI. Decades of research suggest that ROS may be key players in mediating the formation of PUs. ROS levels are increased due to the accumulation of activated macrophages and neutrophils. Excessive ROS production from these cells overwhelms intrinsic antioxidant mechanisms. While short-term and moderate increases in ROS regulate signal transduction of various bioactive molecules; long-term and excessively elevated ROS can cause secondary tissue damage and further debilitating complications. This review discusses the role of ROS in PU development after SCI and TBI. We also review the completed and ongoing clinical trials in the management of PUs after SCI and TBI using different technologies and treatments, including antioxidants.

12.
Antioxidants (Basel) ; 10(5)2021 May 05.
Article in English | MEDLINE | ID: mdl-34063003

ABSTRACT

The study aims to develop high drug-loaded (about 15% lipid matrix) curcumin solid lipid nanoparticles (CSLNs) for wound healing. CSLNs prepared by hot, high-pressure homogenization, without using organic solvents, were optimized using the Taguchi design followed by the central composite design. The optimized CSLNs exhibited a high assay/drug content (0.6% w/w), solubility (6 × 105 times), and EE (75%) with a particle size < 200 nm (PDI-0.143). The CSLNs were safe (in vitro and in vivo), photostable, autoclavable, stable up to one year at 30 °C and under refrigeration and exhibited a controlled release (zero-order; 5 days). XRD, FTIR, and DSC confirmed solubilization and entrapment of the curcumin within the SLNs. TEM and FESEM revealed a smooth and spherical shape. The CSLNs showed a significant antimicrobial effect (MIC of 64 µg/mL for planktonic cells; 512 µg/mL for biofilm formation; and 2 mg/mL for mature biofilm) against Staphylococcus aureus 9144, while free curcumin dispersion did not exhibit any effect. This is the first report on the disruption of mature biofilms by curcumin solid lipid nanoparticles (CSLNs). The cell proliferation potential of CSLNs was also evaluated in vitro while the wound healing potential of CSLNs (incorporated in a hydrogel) was assessed in vivo. In (i) nitrogen mustard gas and (ii) a full-thickness excision wound model, CSLNs exhibited (a) significantly faster wound closure, (b) histologically and immunohistochemically better healing, (c) lower oxidative stress (LPO) and (d) inflammation (TNFα), and (e) increased angiogenesis (VEGF) and antioxidant enzymes, i.e., catalase and GSH levels. CSLNs thus offer a promising modern wound therapy especially for infected wounds, considering their effects in mature biofilm disruption.

13.
J Control Release ; 333: 176-187, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33781808

ABSTRACT

Chronic and non-healing skin wounds are some of the most significant complications in patients with advanced diabetes. A contributing mechanism to this pathology is the non-enzymatic glycation of proteins due to hyperglycemia, leading to the formation of advanced glycation end products (AGEs). AGEs bind to the receptor for AGEs (RAGE), which triggers pro-inflammatory signals that may inhibit the proliferative phase of wound healing. Soluble forms of RAGE (sRAGE) may be used as a competitive inhibitor of AGE-mediated signaling; however, sRAGE is short-lived in the highly proteolytic wound environment. We developed a recombinant fusion protein containing the binding domain of RAGE (vRAGE) linked to elastin-like polypeptides (ELPs) that self-assembles into coacervates at around 30-31 °C. The coacervate size was concentration and temperature-dependent, ranging between 500 and 1600 nm. vRAGE-ELP reversed several AGE-mediated changes in cultured human umbilical vein endothelial cells, including a decrease in viable cell number, an increase in levels of reactive oxygen species (ROS), and an increased expression of the pro-inflammatory marker, intercellular adhesion molecule-1 (ICAM-1). vRAGE-ELP was stable in elastase in vitro for 7 days. When used in a single topical application on full-thickness excisional skin wounds in diabetic mice, wound closure was accelerated, with 90% and 100% wound closure on post-wounding days 28 and 35, respectively, compared to 62% and 85% on the same days in animals treated with vehicle control, consisting of ELP alone. This coacervate system topically delivering a competitive inhibitor of AGEs has potential for the treatment of diabetic wounds.


Subject(s)
Diabetes Mellitus, Experimental , Elastin , Animals , Diabetes Mellitus, Experimental/drug therapy , Humans , Mice , Peptides , Receptor for Advanced Glycation End Products , Skin , Wound Healing
14.
Biomedicines ; 9(2)2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33671499

ABSTRACT

Pressure ulcers (PUs) or sores are a secondary complication of diabetic neuropathy and traumatic spinal cord injury (SCI). PUs tend to occur in soft tissues located around bony prominences and may heal slowly or not at all. A common mechanism underlying impaired healing of PUs may be dysfunction of the local neurovascular system including deficiency of essential neuropeptides, such as substance P (SP). Previous studies indicate that disturbance in cutaneous sensory innervation leads to a defect in all stages of wound healing, as is the case after SCI. It is hypothesized that nerve fibers enhance wound healing by promoting initial inflammation via the releasing of neuropeptides such as SP. Therefore, we investigated whether exogenous SP improves skin wound healing using in vitro and in vivo models. For in vitro studies, the effects of SP on keratinocyte proliferation and wound closure after a scratch injury were studied under normoxia (pO2 ~21%) or hypoxia (pO2 ~1%) and in presence of normal serum (10% v/v) or low serum (1% v/v) concentrations. Hypoxia and low serum both significantly slowed cell proliferation and wound closure. Under combined low serum and hypoxia, used to mimic the nutrient- and oxygen-poor environment of chronic wounds, SP (10-7 M) significantly enhanced cell proliferation and wound closure rate. For in vivo studies, two full-thickness excisional wounds were created with a 5 mm biopsy punch on the dorsum on either side of the midline of 15-week-old C57BL/6J male and female mice. Immediately, wounds were treated topically with one dose of 0.5 µg SP or PBS vehicle. The data suggest a beneficial role in wound closure and reepithelization, and thus enhanced wound healing, in male and female mice. Taken together, exogenously applied neuropeptide SP enhanced wound healing via cell proliferation and migration in vitro and in vivo. Thus, exogenous SP may be a useful strategy to explore further for treating PUs in SCI and diabetic patients.

15.
Adv Wound Care (New Rochelle) ; 10(5): 221-233, 2021 05.
Article in English | MEDLINE | ID: mdl-32487014

ABSTRACT

Significance: Chronic wounds are one of the major burdens of the U.S. health care system with an annual cost of $31.7 billion and affecting an estimated 2.4-4.5 million people. Several underlying molecular and cellular pathophysiological mechanisms, including poor vascularization, excessive extracellular matrix (ECM) degradation by proteases, decreased growth factor activity, and bacterial infection can lead to chronic wounds. More effective wound therapies need to address one or more of these mechanisms to significantly advance wound care. Recent Advances: Self-assembled nanomaterials may provide new therapeutic options for chronic wound healing applications as those materials generally exhibit excellent biocompatibility and can bear multiple functionalities, such as ECM-mimicking properties, drug delivery capabilities, and tunable mechanics. Furthermore, self-assembled nanomaterials can be produced at low cost, and owing to their ability to self-organize, generate complex multifunctional structures that can be tailored to the varying sizes and shapes of chronic wounds. Self-assembled nanomaterials have been engineered to serve as wound dressings, growth factor delivery systems, and antimicrobials. Critical Issues: As there are many different types of self-assembled nanomaterials, which in turn have different mechanisms of self-assembly and physiochemical properties, one type of self-assembled nanomaterials may not be sufficient to address all underlying mechanisms of chronic wounds. However, self-assembled nanomaterials can be easily tailored, and developing multifunctional self-assembled nanomaterials that can address various targets in chronic wounds will be needed. Future Directions: Future studies should investigate combinations of various self-assembled nanomaterials to take full advantage of their multifunctional properties.


Subject(s)
Nanostructures/chemistry , Pharmaceutical Preparations , Wound Healing/drug effects , Animals , Chronic Disease , Drug Delivery Systems , Humans , Nanomedicine , Nanostructures/economics , Skin/pathology
16.
Biomedicines ; 8(10)2020 Sep 28.
Article in English | MEDLINE | ID: mdl-32998437

ABSTRACT

The purpose of this study was to synthesize and characterize novel biocompatible topical polymeric film and hydrogel systems that have the potential to deliver the antibacterial agent thymoquinone (TQ) directly to the skin target site to manage the local wound infection and thereby wound healing. The polyvinyl pyrrolidone (PVP) matrix-type films containing TQ were prepared by the solvent casting method. In vitro skin permeation studies on human cadaver skin produced a mean flux of 2.3 µg TQ/cm2/h. Human keratinocyte monolayers subjected to a scratch wound (an in vitro wound healing assay) showed 85% wound closure at day 6 in the TQ group (100 ng/mL TQ) as compared to 50% in the vehicle control group (p = 0.0001). In a zone-of-inhibition (ZOI) assay, TQ-containing films and hydrogels completely wiped out Staphylococcus aureus in 10 cm diameter Tryptic Soy Agar plates while 500 µg/mL gentamicin containing filters gave 10 mm of ZOI. In an ex vivo model, TQ-containing films eradicated bacterial colonization on human cadaver skin. Furthermore, in a full-thickness wound infection model in mice, TQ-containing films showed significant activity in controlling Staphylococcus aureus infection, thereby disinfecting the skin wound. In summary, TQ-containing PVP films and hydrogels developed in this study have the potential to treat and manage wound infections.

17.
FASEB J ; 34(9): 12677-12690, 2020 09.
Article in English | MEDLINE | ID: mdl-32729988

ABSTRACT

Myristoylated alanine-rich C-kinase substrate (MARCKS) is an intracellular receptor for polysialic acid. MARCKS supports development, synaptic plasticity, and regeneration after injury. MARCKS binds with its functionally essential effector domain (ED) to polysialic acid. A 25-mer peptide comprising the ED of MARCKS stimulates neuritogenesis of primary hippocampal neurons after addition to the culture. This motivated us to investigate whether ED peptide has similar effects in spinal cord injury. ED peptide supported recovery and regrowth of monoaminergic axons in female, but not in male mice. Sex-specific differences in response to ED peptide application also occurred in cultured neurons. In female but not male neurons, the ED peptide enhanced neurite outgrowth that could be suppressed by inhibitors of the estrogen receptors α and ß, fibroblast growth factor receptor-1, protein kinase C, and matrix metalloproteinase 2. In addition, we observed female-specific elevation of phosphorylated MARCKS levels after ED peptide treatment. In male neurons, the ED peptide enhanced neuritogenesis in the presence of an androgen receptor inhibitor to the extent seen in ED peptide-treated female neurons. However, inhibition of androgen receptor did not lead to increased phosphorylation of MARCKS. These results provide insights into the functions of a novel compound contributing to gender-dependent regeneration.


Subject(s)
Axons/drug effects , Myristoylated Alanine-Rich C Kinase Substrate/metabolism , Neuronal Outgrowth/drug effects , Peptides/pharmacology , Sex Factors , Animals , Cell Culture Techniques , Female , Male , Mice , Protein Domains , Spinal Cord Injuries/drug therapy
18.
Wound Repair Regen ; 28(4): 493-505, 2020 07.
Article in English | MEDLINE | ID: mdl-32428978

ABSTRACT

Nonhealing wounds possess elevated numbers of pro-inflammatory M1 macrophages, which fail to transition to anti-inflammatory M2 phenotypes that promote healing. Hemoglobin (Hb) and haptoglobin (Hp) proteins, when complexed (Hb-Hp), can elicit M2-like macrophages through the heme oxygenase-1 (HO-1) pathway. Despite the fact that nonhealing wounds are chronically inflamed, previous studies have focused on non-inflammatory systems, and do not thoroughly compare the effects of complexed vs individual proteins. We aimed to investigate the effect of Hb/Hp treatments on macrophage phenotype in an inflammatory, lipopolysaccharide (LPS)-stimulated environment, similar to chronic wounds. Human M1 macrophages were cultured in vitro and stimulated with LPS. Concurrently, Hp, Hb, or Hb-Hp complexes were delivered. The next day, 27 proteins related to inflammation were measured in the supernatants. Hp treatment decreased a majority of inflammatory factors, Hb increased many, and Hb-Hp had intermediate trends, indicating that Hp attenuated overall inflammation to the greatest extent. From this data, Ingenuity Pathway Analysis software identified high motility group box 1 (HMGB1) as a key canonical pathway-strongly down-regulated from Hp, strongly up-regulated from Hb, and slightly activated from Hb-Hp. HMGB1 measurements in macrophage supernatants confirmed this trend. In vivo results in diabetic mice with biopsy punch wounds demonstrated accelerated wound closure with Hp treatment, and delayed wound closure with Hb treatment. This work specifically studied Hb/Hp effects on macrophages in a highly inflammatory environment relevant to chronic wound healing. Results show that Hp-and not Hb-Hp, which is known to be superior in noninflammatory conditions-reduces inflammation in LPS-stimulated macrophages, and HMGB1 signaling is also implicated. Overall, Hp treatment on M1 macrophages in vitro reduced the inflammatory secretion profile, and also exhibited benefits in in silico and in vivo wound-healing models.


Subject(s)
HMGB1 Protein/drug effects , Haptoglobins/pharmacology , Hemoglobins/pharmacology , Inflammation/metabolism , Macrophages/drug effects , Wound Healing/drug effects , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Diabetes Mellitus , HMGB1 Protein/metabolism , Heme Oxygenase-1 , Humans , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Mice , Mice, Obese , Receptors, Cell Surface/metabolism , Signal Transduction
19.
Curr Neuropharmacol ; 18(11): 1092-1105, 2020.
Article in English | MEDLINE | ID: mdl-32442086

ABSTRACT

Traumatic injury to the spinal cord (SCI) and brain (TBI) are serious health problems and affect many people every year throughout the world. These devastating injuries are affecting not only patients but also their families socially as well as financially. SCI and TBI lead to neurological dysfunction besides continuous inflammation, ischemia, and necrosis followed by progressive neurodegeneration. There are well-established changes in several other processes such as gene expression as well as protein levels that are the important key factors to control the progression of these diseases. We are not yet able to collect enough knowledge on the underlying mechanisms leading to the altered gene expression profiles and protein levels in SCI and TBI. Cell loss is hastened by the induction or imbalance of pro- or anti-inflammatory expression profiles and transcription factors for cell survival after or during trauma. There is a sequence of events of dysregulation of these factors from early to late stages of trauma that opens a therapeutic window for new interventions to prevent/ restrict the progression of these diseases. There has been increasing interest in the modulation of these factors for improving the patient's quality of life by targeting both SCI and TBI. Here, we review some of the recent transcriptional factors and protein biomarkers that have been developed and discovered in the last decade in the context of targeted therapeutics for SCI and TBI patients.


Subject(s)
Brain Injuries/drug therapy , Brain Injuries/metabolism , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Animals , Biomarkers , Brain/metabolism , Humans , Transcription Factors
20.
Cells ; 9(4)2020 04 14.
Article in English | MEDLINE | ID: mdl-32295218

ABSTRACT

The application of human-induced pluripotent stem cells (hiPSCs) to generate vascular smooth muscle cells (hiPSC-VSMCs) in abundance is a promising strategy for vascular regeneration. While hiPSC-VSMCs have already been utilized for tissue-engineered vascular grafts and disease modeling, there is a lack of investigations exploring their therapeutic secretory factors. The objective of this manuscript was to understand how the biophysical property of a collagen-based scaffold dictates changes in the secretory function of hiPSC-VSMCs while developing hiPSC-VSMC-based therapy for durable regenerative wound healing. We investigated the effect of collagen fibrillar density (CFD) on hiPSC-VSMC's paracrine secretion and cytokines via the construction of varying density of collagen scaffolds. Our study demonstrated that CFD is a key scaffold property that modulates the secretory function of hiPSC-VSMCs. This study lays the foundation for developing collagen-based scaffold materials for the delivery of hiPSC-VSMCs to promote regenerative healing through guiding paracrine signaling pathways.


Subject(s)
Induced Pluripotent Stem Cells/metabolism , Muscle, Smooth, Vascular/metabolism , Tissue Scaffolds/standards , Wound Healing/physiology , Animals , Cell Differentiation , Humans , Male , Mice , Mice, Nude
SELECTION OF CITATIONS
SEARCH DETAIL
...