Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 902: 166135, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37562618

ABSTRACT

Evapotranspiration (ET) is an important process in green stormwater infrastructure (GSI) aiming to reduce urban drainage, to promote cooling and/or to contribute to an urban hydrological balance restoration closer to the natural one. However, on these structures and particularly on green roofs (GR), its evaluation remains challenging and subject to discussion. Estimates of ET by water balance, energy balance, and an ET chamber were performed on five different plots of a full-scale experimental green roof in Trappes (France). Compared to both water balance (90th percentile range of daily ET values: 0.8 mm/d to 3 mm/d) and chamber methods (90th percentile range of daily ET values: 1 mm/d to 1.5 mm/d), the energy balance (90th percentile range of daily ET values is between 1.8 mm and 3.7 mm) produces higher values, 1 to 2 times higher in cumulative values during common periods. The chamber ET displays a similar trend to the energy balance on an hourly basis, and its values remain within the same range as the water balance evaluations on a daily time-step. All three assessments consistently fell below the potential ET values estimated with the Penman-Monteith formula. Critical issues in ET estimation through experimentation have arisen. Sensible heat flux (H) significantly increases ET values when using the energy balance approach compared to the other two methods. The Water Balance method is practical, but on days following rainfall events, the Chamber method may prove more reliable, albeit more time and labour-intensive. The three methods indicated that the substrate thickness was the main contributing factor to increase ET, with well-maintained herbaceous plants providing higher ET values than sedums in thick (15 cm) substrates. In addition, the substrate's nature, especially its organic content, is another factor that promotes ET in green roofs.

2.
Environ Sci Pollut Res Int ; 30(8): 19705-19724, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36653688

ABSTRACT

Stormwater mitigation efficiency of bioretention systems relies for a large part on their capacity to infiltrate rapidly received runoff. Within this context, the primary aim of this literature review was to clarify the vegetation influences on bioretention media hydraulic conductivity, with the ultimate goal of improving guidance on plant choice for system durability. A thorough synthesis of studies dealing with the comparison of plant species, functional types, or traits on infiltration-related processes in biofilters was achieved. Overall, results converged to a positive impact of plants on water infiltration and percolation, either under greenhouse or field conditions. In most cases, vegetation selection had a determining role in maintaining initial media infiltration rates, with in terms of improvement: turfgrass < prairie grass < shrubs < trees. Wind-induced movements of rigid foliage or stems are believed to avoid complete surface clogging. Species with thick, rhizomatous or fleshy (with maximum root diameter near the centimeter range), and tap or deep root systems could be preferred to maximize infiltration rates in permeable bioretention media. In fine-textured soils, higher specific root length, root length density, or mass density could also enhance infiltration. Root mass densities (0.1-2.2 kg.m3) were positively linked with infiltration rates in unlined systems while roots around 1 mm diameter would favor macropore-related preferential flows and increased hydraulic conductivity. Finally, implementation of high-diversity plant communities would ensure the presence of a more functionally rich vegetation community with species possessing adequate physiological adaptations (including root system architecture) to local environmental conditions for perennial cover and proper bioretention hydrological functioning.


Subject(s)
Rain , Soil , Plants , Trees , Water Movements
3.
Environ Manage ; 56(1): 66-80, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25855072

ABSTRACT

Over the last decade, a growing interest has been shown toward innovative stormwater management practices, breaking away from conventional "end of pipe" approaches (based on conveying water offsite to centralized detention facilities). Innovative strategies, referred to as sustainable urban drainage systems, low impact development (LID) or green infrastructures, advocating for management of runoff as close to its origin as possible, have therefore gained a lot of popularity among practitioners and public authorities. However, while the need for pollution control is generally well accepted, there is no wide agreement about management criteria to be given to developers. This article hence aims to compare these criteria through literature analysis of different state or local stormwater management manuals or guidelines, investigating both their suitability for pollution control and their influence on best management practices selection and design. Four categories of criteria were identified: flow-rate limitations, "water quality volumes" (to be treated), volume reduction (through infiltration or evapotranspiration), and non-hydrologic criteria (such as loads reduction targets or maximum effluent concentrations). This study suggests that hydrologic criteria based on volume reduction (rather than treatment) might generally be preferable for on-site control of diffuse stormwater pollution. Nonetheless, determination of an appropriate management approach for a specific site is generally not straightforward and presents a variety of challenges for site designers seeking to satisfy local requirements in addressing stormwater quantity and quality issues. The adoption of efficient LID solution may therefore strongly depend on the guidance given to practitioners to account for these management criteria.


Subject(s)
City Planning/methods , Environmental Pollution/prevention & control , Floods , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...