Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 109(5-1): 054902, 2024 May.
Article in English | MEDLINE | ID: mdl-38907414

ABSTRACT

We investigate experimentally the influence of rotation on the penetration depth of a spherical projectile impacting a granular medium. We show that a rotational motion significantly increases the penetration depth achieved. Moreover, we model our experimental results by modifying the frictional term of the equation describing the penetration dynamics of an object in a granular medium. In particular, we find that the frictional drag decreases linearly with the velocity ratio between rotational (spin motion) and translational (falling motion) velocities. The good agreement between our model and our experimental measurements offers perspectives for estimating the depth that spinning projectiles reach after impacting onto a granular ground, such as happens with seeds dropped from aircraft or with landing probes.

2.
Phys Rev E ; 93(1): 012904, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26871140

ABSTRACT

The rheological properties of granular matter within a two-dimensional flow around a moving disk is investigated experimentally. Using a combination of photoelastic and standard tessellation techniques, the strain and stress tensors are estimated at the grain scale in the time-averaged flow field around a large disk pulled at constant velocity in an assembly of smaller disks. On the one hand, one observes inhomogeneous shear rate and strongly localized shear stress and pressure fields. On the other hand, a significant dilation rate, which has the same magnitude as the shear strain rate, is reported. Significant deviations are observed with local rheology that justify the need of searching for a nonlocal rheology.

3.
Article in English | MEDLINE | ID: mdl-23410320

ABSTRACT

We present here a detailed granular flow characterization together with force measurements for the quasi-bidimensional situation of a horizontal cylinder penetrating vertically at a constant velocity in dry granular matter between two parallel glass walls. In the velocity range studied here, the drag force on the cylinder does not depend on the velocity V(0) and is mainly proportional to the cylinder diameter d. While the force on the cylinder increases with its penetration depth, the granular velocity profile around the cylinder is found to be stationary with fluctuations around a mean value leading to the granular temperature profile. Both mean velocity profile and temperature profile exhibit strong localization near the cylinder. The mean flow perturbation induced by the cylinder decreases exponentially away from the cylinder on a characteristic length λ that is mainly governed by the cylinder diameter for a large enough cylinder/grain size ratio d/d(g): λ~d/4+2d(g). The granular temperature exhibits a constant plateau value T(0) in a thin layer close to the cylinder of extension δ(T(0))~λ/2 and decays exponentially far away with a characteristic length λ(T) of a few grain diameters (λ(T)~3d(g)). The granular temperature plateau T(0) that scales as V(0)(2)d(g)/d is created by the flow itself from the balance between the "granular heat" production by the shear rate V(0)/λ over δ(T(0)) close to the cylinder and the granular dissipation far away.


Subject(s)
Colloids/chemistry , Models, Chemical , Models, Molecular , Rheology/methods , Computer Simulation , Stress, Mechanical
4.
Phys Rev Lett ; 107(4): 048001, 2011 Jul 22.
Article in English | MEDLINE | ID: mdl-21867044

ABSTRACT

We present in this Letter experimental results on the bidimensional flow field around a cylinder penetrating into dense granular matter, together with drag force measurements. A hydrodynamic model based on extended kinetic theory for dense granular flow reproduces well the flow localization close to the cylinder and the corresponding scalings of the drag force, which is found to not depend on velocity, but linearly on the pressure and on the cylinder diameter and weakly on the grain size. Such a regime is found to be valid at a low enough "granular" Reynolds number.


Subject(s)
Hydrodynamics , Models, Theoretical , Rheology , Kinetics , Mechanical Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL
...