Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; : e202408422, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38818668

ABSTRACT

Attempts to create a novel Mg-Be bond by reaction of [(DIPePBDI*)MgNa]2 with Be[N(SiMe3)2]2 failed; DIPePBDI* = HC[(tBu)C=N(DIPeP)]2, DIPeP = 2,6-Et2C-phenyl. Even at elevated temperatures, no conversion was observed. This is likely caused by strong steric shielding of the Be center. A similar reaction with the more open Cp*BeCl gave in quantitative yield (DIPePBDI)MgBeCp* (1). The crystal structure shows a Mg-Be bond of 2.469(4) Å. Homolytic cleavage of the Mg-Be bond requires ΔH = 69.6 kcal mol-1 (cf. CpBe-BeCp 69.0 kcal mol-1 and (DIPPBDI)Mg-Mg(DIPPBDI) 55.8 kcal mol-1). Natural-Population-Analysis (NPA) shows fragment charges: (DIPePBDI*)Mg +0.27 / BeCp* -0.27. The very low NPA charge on Be (+0.62) compared to Mg (+1.21) and the strongly upfield 9Be NMR signal at -23.7 ppm are in line with considerable electron density on Be and the formal oxidation state assignment of MgII-Be0. Despite this Mgδ+-Beδ- polarity, 1 is extremely thermally stable and unreactive towards H2, CO, N2, cyclohexene and carbodiimide. It reacted with benzophenone, azobenzene, phenyl acetylene, CO2 and CS2. Reaction with 1-adamantyl azide led to reductive coupling and formation of an N6-chain. The azide reagent also inserted in the Cp*-Be bond. The inertness of 1 is likely due to bulky ligands protecting the Mg-Be unit.

2.
Dalton Trans ; 52(38): 13547-13554, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37721484

ABSTRACT

The ambiphilicity of pseudo-halides has been the object of extensive debate. Herein, we use a series of trispyrazolylborato beryllium pseudo-halido complexes [TpBe(X')] with X' = CN-, N3-, NCO- and NCS- to explore the origins of the preferred isomers. Thus, we have synthesised and characterised through NMR and IR spectroscopy as well as single crystal X-ray diffraction these complexes. A combination with quantum chemical calculations within the DFT framework enabled an in-depth understanding of the bonding modes and preferences of the investigated pseudo-halido ligands.

3.
Chemistry ; 29(66): e202302652, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-37590553

ABSTRACT

The reactivity of hexamethylcyclotrisiloxane (D3 ) towards BeCl2 , BeBr2 , BeI2 and [Be3 Ph6 ]3 was investigated. While BeCl2 only showed unselective reactivity, BeBr2 , BeI2 and [Be3 Ph6 ] cleanly react to the trinuclear complexes [Be3 Br2 (OSiMe2 Br)4 ], [Be3 I2 (OSiMe2 I)4 ] and [Be3 Ph2 (OSiMe2 Ph)4 ]. These unprecedented bromide, iodide and phenyl transfer reactions from a group II metal onto silicon offer a versatile access to previously unknown diorgano bromo and iodo silanolates.

4.
Chemistry ; 29(60): e202302495, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37575053

ABSTRACT

The reaction of homoleptic beryllium halide with diphenyl beryllium complexes leads to the clean formation of heteroleptic beryllium Grignard compounds [(L)1-2 BePhX]1-2 (X=Cl, Br, I; L=C-, N-, O-donor ligand). The influence of ligands and solvent on these compounds, their formation and exchange equilibria in solution were investigated, together with the factors determining the complex constitution.

5.
Angew Chem Int Ed Engl ; 62(41): e202308293, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37522394

ABSTRACT

Dynamic covalent chemistry (DCvC) is a powerful and widely applied tool in modern synthetic chemistry, which is based on the reversible cleavage and formation of covalent bonds. One of the inherent strengths of this approach is the perspective to reversibly generate in an operationally simple approach novel structural motifs that are difficult or impossible to access with more traditional methods and require multiple bond cleaving and bond forming steps. To date, these fundamentally important synthetic and conceptual challenges in the context of DCvC have predominantly been tackled by exploiting compounds of lighter p-block elements, even though heavier p-block elements show low bond dissociation energies and appear to be ideally suited for this approach. Here we show that a dinuclear organometallic bismuth compound, containing BiMe2 groups that are connected by a thioxanthene linker, readily undergoes selective and reversible cleavage of its Bi-C bonds upon exposure to external stimuli. The exploitation of DCvC in the field of organometallic heavy p-block chemistry grants access to unprecedented macrocyclic and barrel-type oligonuclear compounds.

6.
Chemistry ; 28(35): e202200851, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35389541

ABSTRACT

Diphenylberyllium [Be3 Ph6 ] is shown here to react cleanly as a Brønsted base with a vast variety of protic compounds. Through the addition of the simple molecules tBuOH, HNPh2 and HPPh2 , as well as the more complex 1,3-bis-(2,6-diisopropylphenyl)imidazolinium chloride, one or two phenyl groups in diphenylberyllium were protonated. As a result, the long-postulated structures of [Be3 (OtBu)6 ] and [Be(µ-NPh2 )Ph]2 have finally been verified and shown to be static in solution. Additionally [Be(µ-PPh2 )(HPPh2 )Ph]2 was generated, which is only the second beryllium-phospanide to be prepared; the stark differences between its behaviour and that of the analogous amide were also examined. The first crystalline example of a beryllium Grignard reagent with a non-bulky aryl group has also been prepared; it is stabilised with an N-heterocyclic carbene.

SELECTION OF CITATIONS
SEARCH DETAIL
...