Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Urol ; 2016: 2367432, 2016.
Article in English | MEDLINE | ID: mdl-27418927

ABSTRACT

Purpose. To investigate impact of polysaccharide hemostat 4DryField PH (4DF) applied on lymph node dissection area after radical retropubic prostatectomy (RRP) on lymphorrhea and lymphocele (LC) formation. Methods. 104 consecutive patients underwent RRP, 51 without 4DF treatment (CT-group) and 53 with 4DF treatment (4DF-group). Groups were comparable (age, risk profile, and lymph node numbers). Postoperative drain loss (PDL) and development of early and late LC were analyzed (mean follow-up at 7 months: 100%). Results. PDL was 452.5 ± 634.2 mL without and 308.5 ± 214 mL with 4DF treatment. PDL > 1000 mL only occurred in CT-group (5/51). Overall, 45 LC (26 in CT- versus 19 in the 4DF-group) were diagnosed. At day 8, LC were equally distributed between groups. Incidence of late LC, however, was twice in controls (16/51) versus 4DF-patients (8/53). Symptomatic LC (4 in untreated patients, 2 in 4DF-patients) were treated with percutaneous drainage (duration: 45 days in untreated patients versus 12 days in 4DF-patients). Conclusion. Application of 4DF on lymph node dissection areas lessened total drain loss and significantly lowered high volume drain loss. Furthermore, 4DF reduced frequency of late lymphoceles and lymphoceles requiring treatment by half, as well as duration of percutaneous drainage by more than two-thirds.

2.
PLoS One ; 9(10): e110953, 2014.
Article in English | MEDLINE | ID: mdl-25333799

ABSTRACT

Lipoteichoic acids (LTA) are amphiphilic polymers that are important constituents of the cell wall of many Gram-positive bacteria. The chemical structures of LTA vary among organisms, albeit in the majority of Gram-positive bacteria the LTAs feature a common poly-1,3-(glycerolphosphate) backbone. Previously, the specificity of opsonic antibodies for this backbone present in some Gram-positive bacteria has been demonstrated, suggesting that this minimal structure may be sufficient for vaccine development. In the present work, we studied a well-defined synthetic LTA-fragment, which is able to inhibit opsonic killing of polyclonal rabbit sera raised against native LTA from Enterococcus faecalis 12030. This promising compound was conjugated with BSA and used to raise rabbit polyclonal antibodies. Subsequently, the opsonic activity of this serum was tested in an opsonophagocytic assay and specificity was confirmed by an opsonophagocytic inhibition assay. The conjugated LTA-fragment was able to induce specific opsonic antibodies that mediate killing of the clinical strains E. faecalis 12030, Enterococcus faecium E1162, and community-acquired Staphylococcus aureus strain MW2 (USA400). Prophylactic immunization with the teichoic acid conjugate and with the rabbit serum raised against this compound was evaluated in active and passive immunization studies in mice, and in an enterococcal endocarditis rat model. In all animal models, a statistically significant reduction of colony counts was observed indicating that the novel synthetic LTA-fragment conjugate is a promising vaccine candidate for active or passive immunotherapy against E. faecalis and other Gram-positive bacteria.


Subject(s)
Cross Infection/immunology , Lipopolysaccharides/immunology , Teichoic Acids/immunology , Vaccines, Conjugate/immunology , Vaccines, Synthetic/administration & dosage , Animals , Antibodies, Bacterial/administration & dosage , Antibodies, Bacterial/immunology , Cross Infection/microbiology , Cross Infection/prevention & control , Enterococcus faecium/immunology , Enterococcus faecium/pathogenicity , Immune Sera/immunology , Immunization, Passive , Mice , Opsonin Proteins/immunology , Rabbits , Rats , Staphylococcus aureus/immunology , Staphylococcus aureus/pathogenicity , Vaccines, Conjugate/chemistry , Vaccines, Synthetic/immunology
3.
PLoS One ; 9(3): e91863, 2014.
Article in English | MEDLINE | ID: mdl-24637922

ABSTRACT

Enterococci are among the major pathogens implicated in cardiac infections and biofilm formation. E. faecalis has been shown to play an important role in infectious endocarditis. Several distinct mechanisms for biofilm formation have been identified in E. faecalis. Our group has previously characterized two distinct bacterial glucosyltransferases playing key roles in the production of the major cell wall glycolipids and leading to reduced biofilm production. To assess if this mechanism is involved in the pathogenesis of enterococcal endocarditis we compared the wild-type strain of E. faecalis 12030 with two mutants in gene EF2891 and EF2890 respectively in a rat model of infective endocarditis. The results showed less endocarditic lesions and reduced colony counts per vegetation in the two mutants. indicating that the modification of bacterial surface lipids results in significantly reduced virulence in infective endocarditis. These results underscore the important role of biofilm formation in the pathogenicity of enterococcal endocarditis and may indicate an interesting target for novel therapeutic strategies.


Subject(s)
Cell Wall/metabolism , Endocarditis, Bacterial/microbiology , Enterococcus faecalis/genetics , Enterococcus faecalis/metabolism , Glycolipids/metabolism , Mutation , Animals , Bacterial Proteins/genetics , Disease Models, Animal , Enterococcus faecalis/pathogenicity , Female , Rats , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...