Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
G3 (Bethesda) ; 13(5)2023 05 02.
Article in English | MEDLINE | ID: mdl-36891809

ABSTRACT

Pearl millet (Pennisetum glaucum (L.)) R. Br. syn. Cenchrus americanus (L.) Morrone) is an important crop in South Asia and sub-Saharan Africa which contributes to ensuring food security. Its genome has an estimated size of 1.76 Gb and displays a high level of repetitiveness above 80%. A first assembly was previously obtained for the Tift 23D2B1-P1-P5 cultivar genotype using short-read sequencing technologies. This assembly is, however, incomplete and fragmented with around 200 Mb unplaced on chromosomes. We report here an improved quality assembly of the pearl millet Tift 23D2B1-P1-P5 cultivar genotype obtained with an approach combining Oxford Nanopore long reads and Bionano Genomics optical maps. This strategy allowed us to add around 200 Mb at the chromosome-level assembly. Moreover, we strongly improved continuity in the order of the contigs and scaffolds within the chromosomes, particularly in the centromeric regions. Notably, we added more than 100 Mb around the centromeric region on chromosome 7. This new assembly also displayed a higher gene completeness with a complete BUSCO score of 98.4% using the Poales database. This more complete and higher quality assembly of the Tift 23D2B1-P1-P5 genotype now available to the community will help in the development of research on the role of structural variants and more broadly in genomics studies and the breeding of pearl millet.


Subject(s)
Nanopores , Pennisetum , Pennisetum/genetics , Plant Breeding , Genome , Chromosome Mapping
2.
Front Plant Sci ; 13: 880631, 2022.
Article in English | MEDLINE | ID: mdl-36311100

ABSTRACT

Pearl millet is among the top three-cereal production in one of the most climate vulnerable regions, sub-Saharan Africa. Its Sahelian origin makes it adapted to grow in poor sandy soils under low soil water regimes. Pearl millet is thus considered today as one of the most interesting crops to face the global warming. Flowering time, a trait highly correlated with latitude, is one of the key traits that could be modulated to face future global changes. West African pearl millet landraces, can be grouped into early- (EF) and late-flowering (LF) varieties, each flowering group playing a specific role in the functioning and resilience of Sahelian smallholders. The aim of this study was thus to detect genes linked to flowering but also linked to relevant traits within each flowering group. We thus investigated genomic and phenotypic diversity in 109 pearl millet landrace accessions, i.e., 66 early-flowering and 43 late-flowering, grown in the groundnut basin, the first area of rainfed agriculture in Senegal dominated by dry cereals (millet, maize, and sorghum) and legumes (groundnuts, cowpeas). We were able to confirm the role of PhyC gene in pearl millet flowering and identify several other genes that appear to be as much as important, such as FSR12 and HAC1. HAC1 and two other genes appear to be part of QTLs previously identified and deserve further investigation. At the same time, we were able to highlight a several genes and variants that could contribute to the improvement of pearl millet yield, especially since their impact was demonstrated across flowering cycles.

3.
BMC Genomics ; 21(1): 777, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33167854

ABSTRACT

BACKGROUND: Pearl millet, a nutritious food for around 100 million people in Africa and India, displays extensive genetic diversity and a high degree of admixture with wild relatives. Two major morphotypes can be distinguished in Senegal: early-flowering Souna and late-flowering Sanio. Phenotypic variabilities related to flowering time play an important role in the adaptation of pearl millet to climate variability. A better understanding of the genetic makeup of these variabilities would make it possible to breed pearl millet to suit regions with different climates. The aim of this study was to characterize the genetic basis of these phenotypic differences. RESULTS: We defined a core collection that captures most of the diversity of cultivated pearl millets in Senegal and includes 60 early-flowering Souna and 31 late-flowering Sanio morphotypes. Sixteen agro-morphological traits were evaluated in the panel in the 2016 and 2017 rainy seasons. Phenological and phenotypic traits related with yield, flowering time, and biomass helped differentiate early- and late-flowering morphotypes. Further, using genotyping-by-sequencing (GBS), 21,663 single nucleotide polymorphisms (SNPs) markers with more than 5% of minor allele frequencies were discovered. Sparse non-negative matrix factorization (sNMF) analysis confirmed the genetic structure in two gene pools associated with differences in flowering time. Two chromosomal regions on linkage groups (LG 3) (~ 89.7 Mb) and (LG 6) (~ 68.1 Mb) differentiated two clusters among the early-flowering Souna. A genome-wide association study (GWAS) was used to link phenotypic variation to the SNPs, and 18 genes were linked to flowering time, plant height, tillering, and biomass (P-value < 2.3E-06). CONCLUSIONS: The diversity of early- and late-flowering pearl millet morphotypes in Senegal was captured using a heuristic approach. Key phenological and phenotypic traits, SNPs, and candidate genes underlying flowering time, tillering, biomass yield and plant height of pearl millet were identified. Chromosome rearrangements in LG3 and LG6 were inferred as a source of variation in early-flowering morphotypes. Using candidate genes underlying these features between pearl millet morphotypes will be of paramount importance in breeding for resilience to climatic variability.


Subject(s)
Flowers/physiology , Pennisetum , Climate , Genetic Association Studies , India , Pennisetum/genetics , Pennisetum/physiology , Plant Breeding , Senegal
4.
Nat Commun ; 11(1): 5274, 2020 10 19.
Article in English | MEDLINE | ID: mdl-33077747

ABSTRACT

Climate change is already affecting agro-ecosystems and threatening food security by reducing crop productivity and increasing harvest uncertainty. Mobilizing crop diversity could be an efficient way to mitigate its impact. We test this hypothesis in pearl millet, a nutritious staple cereal cultivated in arid and low-fertility soils in sub-Saharan Africa. We analyze the genomic diversity of 173 landraces collected in West Africa together with an extensive climate dataset composed of metrics of agronomic importance. Mapping the pearl millet genomic vulnerability at the 2050 horizon based on the current genomic-climate relationships, we identify the northern edge of the current areas of cultivation of both early and late flowering varieties as being the most vulnerable to climate change. We predict that the most vulnerable areas will benefit from using landraces that already grow in equivalent climate conditions today. However, such seed-exchange scenarios will require long distance and trans-frontier assisted migrations. Leveraging genetic diversity as a climate mitigation strategy in West Africa will thus require regional collaboration.

5.
PLoS One ; 15(9): e0239123, 2020.
Article in English | MEDLINE | ID: mdl-32925982

ABSTRACT

Cultivated diversity is considered an insurance against major climatic variability. However, since the 1980s, several studies have shown that climate variability and agricultural changes may already have locally eroded crop genetic diversity. We studied pearl millet diversity in Senegal through a comparison of pearl millet landraces collected 40 years apart. We found that more than 20% of villages visited in 1976 had stopped growing pearl millet. Despite this, its overall genetic diversity has been maintained but differentiation between early- and late-flowering accessions has been reduced. We also found stronger crop-to-wild gene flow than wild-to-crop gene flow and that wild-to-crop gene flow was weaker in 2016 than in 1976. In conclusion, our results highlight genetic homogenization in Senegal. This homogenization within cultivated pearl millet and between wild and cultivated forms is a key factor in genetic erosion and it is often overlooked. Improved assessment and conservation strategies are needed to promote and conserve both wild and cultivated pearl millet diversity.


Subject(s)
Crop Production/trends , Crops, Agricultural/genetics , Evolution, Molecular , Genetic Variation , Pennisetum/genetics , Conservation of Natural Resources , Crop Production/history , Crop Production/statistics & numerical data , DNA, Plant/genetics , DNA, Plant/isolation & purification , Flowers/growth & development , Gene Flow , History, 20th Century , History, 21st Century , Senegal
6.
Mol Ecol Resour ; 19(4): 997-1014, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30945415

ABSTRACT

The helmeted guinea fowl Numida meleagris belongs to the order Galliformes. Its natural range includes a large part of sub-Saharan Africa, from Senegal to Eritrea and from Chad to South Africa. Archaeozoological and artistic evidence suggest domestication of this species may have occurred about 2,000 years BP in Mali and Sudan primarily as a food resource, although villagers also benefit from its capacity to give loud alarm calls in case of danger, of its ability to consume parasites such as ticks and to hunt snakes, thus suggesting its domestication may have resulted from a commensal association process. Today, it is still farmed in Africa, mainly as a traditional village poultry, and is also bred more intensively in other countries, mainly France and Italy. The lack of available molecular genetic markers has limited the genetic studies conducted to date on guinea fowl. We present here a first-generation whole-genome sequence draft assembly used as a reference for a study by a Pool-seq approach of wild and domestic populations from Europe and Africa. We show that the domestic populations share a higher genetic similarity between each other than they do to wild populations living in the same geographical area. Several genomic regions showing selection signatures putatively related to domestication or importation to Europe were detected, containing candidate genes, most notably EDNRB2, possibly explaining losses in plumage coloration phenotypes in domesticated populations.


Subject(s)
Domestication , Evolution, Molecular , Galliformes/classification , Galliformes/genetics , Genome , Selection, Genetic , Africa , Animals , Computational Biology , Europe , Sequence Analysis, DNA , Whole Genome Sequencing
7.
Front Plant Sci ; 10: 4, 2019.
Article in English | MEDLINE | ID: mdl-30774638

ABSTRACT

Global environmental changes strongly impact wild and domesticated species biology and their associated ecosystem services. For crops, global warming has led to significant changes in terms of phenology and/or yield. To respond to the agricultural challenges of this century, there is a strong need for harnessing the genetic variability of crops and adapting them to new conditions. Gene flow, from either the same species or a different species, may be an immediate primary source to widen genetic diversity and adaptions to various environments. When the incorporation of a foreign variant leads to an increase of the fitness of the recipient pool, it is referred to as "adaptive introgression". Crop species are excellent case studies of this phenomenon since their genetic variability has been considerably reduced over space and time but most of them continue exchanging genetic material with their wild relatives. In this paper, we review studies of adaptive introgression, presenting methodological approaches and challenges to detecting it. We pay particular attention to the potential of this evolutionary mechanism for the adaptation of crops. Furthermore, we discuss the importance of farmers' knowledge and practices in shaping wild-to-crop gene flow. Finally, we argue that screening the wild introgression already existing in the cultivated gene pool may be an effective strategy for uncovering wild diversity relevant for crop adaptation to current environmental changes and for informing new breeding directions.

8.
Nat Ecol Evol ; 2(9): 1377-1380, 2018 09.
Article in English | MEDLINE | ID: mdl-30082736

ABSTRACT

There have been intense debates over the geographic origin of African crops and agriculture. Here, we used whole-genome sequencing data to infer the domestication origin of pearl millet (Cenchrus americanus). Our results supported an origin in western Sahara, and we dated the onset of cultivated pearl millet expansion in Africa to 4,900 years ago. We provided evidence that wild-to-crop gene flow increased cultivated genetic diversity leading to diversity hotspots in western and eastern Sahel and adaptive introgression of 15 genomic regions. Our study reconciled genetic and archaeological data for one of the oldest African crops.


Subject(s)
Domestication , Genome, Plant , Pennisetum/genetics , Africa
9.
Nat Biotechnol ; 35(10): 969-976, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28922347

ABSTRACT

Pearl millet [Cenchrus americanus (L.) Morrone] is a staple food for more than 90 million farmers in arid and semi-arid regions of sub-Saharan Africa, India and South Asia. We report the ∼1.79 Gb draft whole genome sequence of reference genotype Tift 23D2B1-P1-P5, which contains an estimated 38,579 genes. We highlight the substantial enrichment for wax biosynthesis genes, which may contribute to heat and drought tolerance in this crop. We resequenced and analyzed 994 pearl millet lines, enabling insights into population structure, genetic diversity and domestication. We use these resequencing data to establish marker trait associations for genomic selection, to define heterotic pools, and to predict hybrid performance. We believe that these resources should empower researchers and breeders to improve this important staple crop.


Subject(s)
Agriculture , Desert Climate , Genome, Plant , Pennisetum/genetics , Quantitative Trait, Heritable , Base Sequence , Conserved Sequence , Genes, Plant , Genetic Variation , Genome-Wide Association Study , Hybridization, Genetic , Molecular Sequence Annotation
10.
Front Plant Sci ; 8: 818, 2017.
Article in English | MEDLINE | ID: mdl-28567050

ABSTRACT

Pearl millet (Pennisetum glaucum (L.) R. Br.) is a staple food and a drought-tolerant cereal well adapted to Sub-Saharan Africa agro-ecosystems. An important diversity of pearl millet landraces has been widely conserved by farmers and therefore could help copping with climate changes and contribute to future food security. Hence, characterizing its genetic diversity and population structure can contribute to better assist breeding programs for a sustainable agricultural productivity enhancement. Toward this goal, a comprehensive panel of 404 accessions were used that correspond to 12 improved varieties, 306 early flowering and 86 late-flowering cultivated landraces from Senegal. Twelve highly polymorphic SSR markers were used to study diversity and population structure. Two genes, PgMADS11 and PgPHYC, were genotyped to assess their association to flowering phenotypic difference in landraces. Results indicate a large diversity and untapped potential of Senegalese pearl millet germplasm as well as a genetic differentiation between early- and late-flowering landraces. Further, a fine-scale genetic difference of PgPHYC and PgMADS11 (SNP and indel, respectively) and co-variation of their alleles with flowering time were found among landraces. These findings highlight new genetic insights of pearl millet useful to define heterotic populations for breeding, genomic association panel, or crosses for trait-specific mapping.

11.
Genome Biol Evol ; 9(2): 388-397, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28137746

ABSTRACT

Several studies suggest that cis-regulatory mutations are the favorite target of evolutionary changes, one reason being that cis-regulatory mutations might have fewer deleterious pleiotropic effects than protein-coding mutations. A review of the process also suggests that this bias towards adaptive cis-regulatory variation might be less pronounced at the intraspecific level compared with the interspecific level. In this study, we assessed the contribution of cis-regulatory variation to adaptation at the intraspecific level using populations of wild pearl millet (Cenchrus americanus ssp. monodii) sampled along an environmental gradient in Niger. From RNA sequencing of hybrids to assess allele-specific expression, we identified genes with cis-regulatory divergence between two parental accessions collected in contrasted environmental conditions. This revealed that ∼15% of transcribed genes showed cis-regulatory variation. Intersecting the gene set exhibiting cis-regulatory variation with the gene set identified as targets of selection revealed no excess of cis-acting mutations among the selected genes. We additionally found no excess of cis-regulatory variation among genes associated with adaptive traits. As our approach relied on methods identifying mainly genes submitted to strong selection pressure or with high phenotypic effect, the contribution of cis-regulatory changes to soft selection or polygenic adaptive traits remains to be tested. However our results favor the hypothesis that enrichment of adaptive cis-regulatory divergence builds up over time. For short evolutionary time-scales, cis-acting mutations are not predominantly involved in adaptive evolution associated with strong selective signal.


Subject(s)
Millets/genetics , Polymorphism, Genetic , Regulatory Sequences, Nucleic Acid , Selection, Genetic , Adaptation, Physiological , Alleles , Evolution, Molecular , Genes, Plant , Mutation
12.
Mol Ecol ; 25(21): 5500-5512, 2016 11.
Article in English | MEDLINE | ID: mdl-27664976

ABSTRACT

Uncovering genomic regions involved in adaption is a major goal in evolutionary biology. High-throughput sequencing now makes it possible to tackle this challenge in nonmodel species. Yet, despite the increasing number of methods targeted to specifically detect genomic footprints of selection, the complex demography of natural populations often causes high rates of false positive in gene discoveries. The aim of this study was to identify climate adaptations in wild pearl millet populations, Cenchrus americanus ssp. monodii. We focused on two climate gradients, one in Mali and one in Niger. We used a two-step strategy to limit false-positive outliers. First, we considered gradients as biological replicates and performed RNA sequencing of four populations at the extremities. We combined four methods-three based on differentiation among populations and one based on diversity patterns within populations-to identify outlier SNPs from a set of 87 218 high-quality SNPs. Among 11 155 contigs of pearl millet reference transcriptome, 540 exhibited selection signals as evidenced by at least one of the four methods. In a second step, we genotyped 762 samples in 11 additional populations distributed along the gradients using SNPs from the detected contigs and random SNPs as control. We further assessed selection on this large data set using a differentiation-based method and a method based on correlations with environmental variables based. Four contigs displayed consistent signatures between the four extreme and 11 additional populations, two of which were linked to abiotic and biotic stress responses.


Subject(s)
Adaptation, Physiological/genetics , Genetics, Population , Pennisetum/genetics , Stress, Physiological , Climate , Genome, Plant , Genotype , Mali , Niger , Polymorphism, Single Nucleotide , Transcriptome
13.
Front Plant Sci ; 7: 777, 2016.
Article in English | MEDLINE | ID: mdl-27379109

ABSTRACT

Next-generation sequencing opens the way for genomic studies of diversity even for non-model crops and animals. Genome reduction techniques are becoming progressively more popular as they allow a fraction of the genome to be sequenced for multiple individuals and/or populations. These techniques are an efficient way to explore genome diversity in non-model crops and animals for which no reference genome is available. Genome reduction techniques emerged with the development of specific pipelines such as UNEAK (Universal Network Enabled Analysis Kit) and Stacks. However, even for non-model crops and animals, transcriptomes are easier to obtain, thereby making it possible to directly map reads. We investigate the direct use of transcriptome as an alternative strategy. Our specific objective was to compare SNPs obtained from the UNEAK pipeline as well as SNPs obtained by directly mapping genotyping-by-sequencing reads on a transcriptome. We assessed the feasibility of both SNP datasets, UNEAK and transcriptome mapping, to investigate the diversity of 91 samples of wild pearl millet sampled across its distribution area. Both approaches produced several tens of thousands of single nucleotide variants, but differed in the way the variants were identified, leading to differences in the frequency spectrum associated with marked differences in the assessment of diversity. Difference in the frequency spectrum significantly biased a large set of diversity analyses as well as detection of selection approaches. However, whatever the approach, we found very similar inference of genetic structure, with three major genetic groups from West, Central, and East Africa. For non-model crops, using transcriptome data as a reference is thus a particularly promising way to obtain a more thorough analysis of datasets generated using genome reduction techniques.

14.
Mol Ecol ; 22(23): 5793-804, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24192018

ABSTRACT

Conventional wisdom predicts that sequential founder events will cause genetic diversity to erode in species with expanding geographic ranges, limiting evolutionary potential at the range margin. Here, we show that invasive European starlings (Sturnus vulgaris) in South Africa preserve genetic diversity during range expansion, possibly as a result of frequent long-distance dispersal events. We further show that unfavourable environmental conditions trigger enhanced dispersal, as indicated by signatures of selection detected across the expanding range. This brings genetic variation to the expansion front, counterbalancing the cumulative effects of sequential founding events and optimizing standing genetic diversity and thus evolutionary potential at range margins during spread. Therefore, dispersal strategies should be highlighted as key determinants of the ecological and evolutionary performances of species in novel environments and in response to global environmental change.


Subject(s)
Animal Distribution , Biological Evolution , Genetic Variation , Starlings/genetics , Animals , DNA, Mitochondrial/genetics , Genetics, Population , Introduced Species , Microsatellite Repeats , Molecular Sequence Data , Population Dynamics , Selection, Genetic , South Africa
15.
Ecol Evol ; 2(5): 962-75, 2012 May.
Article in English | MEDLINE | ID: mdl-22837841

ABSTRACT

The expansion of intensive livestock production systems in developing countries has increased the introduction of highly productive exotic breeds facilitating indiscriminate crossbreeding with local breeds. In this study, we set out to investigate the genetic status of the Vietnamese Black H'mong pig breed by evaluating (1) genetic diversity and (2) introgression from exotic breeds. Two exotic breeds, namely Landrace and Yorkshire used for crossbreeding, and the H'mong pig population from Ha Giang (HG) province were investigated using microsatellite markers. Within the province, three phenotypes were observed: a White, a Spotted and a Black phenotype. Genetic differentiation between phenotypes was low (0.5-6.1%). The White phenotypes showed intermediate admixture values between exotic breeds and the Black HG population (0.53), indicating a crossbreed status. Management practices were used to predict the rate of private diversity loss due to exotic gene introgressions. After 60 generations, 100% of Black private alleles will be lost. This loss is accelerated if the admixture rate is increased but can be slowed down if the mortality rate (e.g., recruitment rate) is decreased. Our study showed that a large number of markers are needed for accurately identifying hybrid classes for closely related populations. While our estimate of admixture still seems underestimated, genetic erosion can occur very fast even through indiscriminate crossbreeding.

16.
PLoS One ; 7(5): e38145, 2012.
Article in English | MEDLINE | ID: mdl-22693591

ABSTRACT

The speed of range expansion in many invasive species is often accelerating because individuals with stronger dispersal abilities are more likely to be found at the range front. This 'spatial sorting' of strong dispersers will drive the acceleration of range expansion. In this study, we test whether the process of spatial sorting is at work in an invasive bird population (Common myna, Acridotheris tristis) in South Africa. Specifically, we sampled individuals across its invasive range and compared morphometric measurements relevant and non-relevant to the dispersal ability. Besides testing for signals of spatial sorting, we further examined the effect of environmental factors on morphological variations. Our results showed that dispersal-relevant traits are significantly correlated with distance from the range core, with strong sexual dimorphism, indicative of sex-biased dispersal. Morphological variations were significant in wing and head traits of females, suggesting females as the primary dispersing sex. In contrast, traits not related to dispersal such as those associated with foraging showed no signs of spatial sorting but were significantly affected by environmental variables such as the vegetation and the intensity of urbanisation. When taken together, our results support the role of spatial sorting in facilitating the expansion of Common myna in South Africa despite its low propensity to disperse in the native range.


Subject(s)
Ecological and Environmental Phenomena , Introduced Species , Starlings/anatomy & histology , Starlings/physiology , Animals , Behavior, Animal , Environment , Female , Linear Models , Male , Pattern Recognition, Automated , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...